References
-
Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K. & Nakamura, M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol. Rev. 101, 1237–1308 (2021).
-
Li, J. & Ge, W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol. Cell Endocrinol. 507, 110778 (2020).
-
Ren, Z. et al. foxl2l is a germ cell-intrinsic gatekeeper of oogenesis in zebrafish. Zool. Res. 45, 1116–1130 (2024).
-
Kossack, M. E. & Draper, B. W. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr. Top. Dev. Biol. 134, 119–149 (2019).
-
Wang, X., Bártfai, R., Sleptsova-Freidrich, I. & Orbán, L. The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation. J. Fish. Biol. 70, 33–44 (2007).
-
Zhang, Q. et al. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology 161, https://doi.org/10.1210/endocr/bqaa048 (2020).
-
Aharon, D. & Marlow, F. L. Sexual determination in zebrafish. Cell Mol. Life Sci 79, 8 (2021).
-
Wilson, C. A. et al. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198, 1291–1308 (2014).
-
Siegfried, K. R. & Nüsslein-Volhard, C. Germ line control of female sex determination in zebrafish. Dev. Biol. 324, 277–287 (2008).
-
Ye, D. et al. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. Mar. Biotechnol. 21, 217–228 (2019).
-
Dranow, D. B., Tucker, R. P. & Draper, B. W. Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev. Biol. 376, 43–50 (2013).
-
Tzung, K. W. et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep 4, 61–73 (2015).
-
Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 (2007).
-
Zhang, R. et al. A germline-specific regulator of mitochondrial fusion is required for maintenance and differentiation of germline stem and progenitor cells. Adv. Sci. 9, e2203631 (2022).
-
Wu, K. et al. Genetic evidence for differential functions of figla and nobox in zebrafish ovarian differentiation and folliculogenesis. Commun. Biol. 6, 1185 (2023).
-
Xiong, X., Luo, S., Wu, B. & Wang, J. Comparative Developmental Toxicity and Stress Protein Responses of Dimethyl Sulfoxide to Rare Minnow and Zebrafish Embryos/Larvae. Zebrafish 14, 60–68 (2017).
-
Bai, Y. et al. Species and Life-Stage Sensitivity of Chinese Rare Minnow (Gobiocypris rarus) to Chemical Exposure: A Critical Review. Environ. Toxicol. Chem. 40, 2680–2692 (2021).
-
Liang, X. & Zha, J. Toxicogenomic applications of Chinese rare minnow (Gobiocypris rarus) in aquatic toxicology. Comp. Biochem Physiol. Part D. Genomics Proteom. 19, 174–180 (2016).
-
Hu, X. et al. Genomic deciphering of sex determination and unique immune system of a potential model species rare minnow (Gobiocypris rarus). Sci. Adv. 8, eabl7253 (2022).
-
Zhang, F. et al. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation. Sci. China Life Sci 65, 969–987 (2022).
-
Wang, X. et al. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918 (2023).
-
Xu, C., Cao, Y. & Bao, J. Building RNA-protein germ granules: insights from the multifaceted functions of DEAD-box helicase Vasa/Ddx4 in germline development. Cell Mol. Life Sci 79, 4 (2021).
-
Hay, B., Jan, L. Y. & Jan, Y. N. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587 (1988).
-
Raz, E. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1, REVIEWS1017 (2000).
-
Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H. & Nüsslein-Volhard, C. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875–888 (2000).
-
Krøvel, A. V. & Olsen, L. C. Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech. Dev. 116, 141–150 (2002).
-
Tanaka, M., Kinoshita, M., Kobayashi, D. & Nagahama, Y. Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: a useful model to monitor germ cells in a live vertebrate. Proc. Natl. Acad. Sci. USA 98, 2544–2549 (2001).
-
Yoshizaki, G., Takeuchi, Y., Sakatani, S. & Takeuchi, T. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int. J. Dev. Biol. 44, 323–326 (2000).
-
Krøvel, A. V. & Olsen, L. C. Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev. Biol. 271, 190–197 (2004).
-
Nishimura, T. et al. Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 349, 328–331 (2015).
-
Yan, Y.-L. et al. A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics 213, 529–553 (2019).
-
Zhang, Z., Wu, K., Ren, Z. & Ge, W. Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor. Development 147, https://doi.org/10.1242/dev.189811 (2020).
-
Lin, Q. et al. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish. Genetics 207, 1007–1022 (2017).
-
Nanda, I. et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. USA 99, 11778–11783 (2002).
-
Webster, K. A. et al. Dmrt1 is necessary for male sexual development in zebrafish. Dev. Biol. 422, 33–46 (2017).
-
Herpin, A. & Schartl, M. Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J. 278, 1010–1019 (2011).
-
Rey, R. A. & Grinspon, R. P. Anti-Müllerian hormone, testicular descent and cryptorchidism. Front Endocrinol. (Lausanne) 15, 1361032 (2024).
-
Shang, G. et al. Steroidogenic acute regulatory protein and luteinizing hormone are required for normal ovarian steroidogenesis and oocyte maturation in zebrafish. Biol. Reprod. 101, 760–770 (2019).
-
Zirkin, B. R. & Papadopoulos, V. Leydig cells: formation, function, and regulation. Biol. Reprod. 99, 101–111 (2018).
-
Zhai, G. et al. Characterization of Sexual Trait Development in cyp17a1-Deficient Zebrafish. Endocrinology 159, 3549–3562 (2018).
-
Tanaka, M. Germline stem cells are critical for sexual fate decision of germ cells. Bioessays 38, 1227–1233 (2016).
-
Gross-Thebing, T. & Raz, E. Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr. Top. Dev. Biol. 140, 181–208 (2020).
-
Wu, Y.-K. & Fan, H.-Y. Revisiting ZAR proteins: the understudied regulator of female fertility and beyond. Cell Mol. Life Sci 79, 92 (2022).
-
Shi, D.-L. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J. Genet Genomics 51, 889–899 (2024).
-
Yang, Y.-J., Wang, Y., Li, Z., Zhou, L. & Gui, J.-F. Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 205, 1551–1572 (2017).
-
Costa, Y. & Cooke, H. J. Dissecting the mammalian synaptonemal complex using targeted mutations. Chromosome Res 15, 579–589 (2007).
-
Biswas, L. et al. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 161, R13–R35 (2021).
-
Qin, Y., Jiao, X., Simpson, J. L. & Chen, Z.-J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum. Reprod. Update 21, 787–808 (2015).
-
de Boer, E. & Heyting, C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115, 220–234 (2006).
-
Strunnikov, A. Cohesin complexes with a potential to link mammalian meiosis to cancer. Cell Regen 2, 4 (2013).
-
Ito, M., Fujita, Y. & Shinohara, A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair 134, 103613 (2024).
-
San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu Rev. Biochem 77, 229–257 (2008).
-
Li, X.-Y., Mei, J., Ge, C.-T., Liu, X.-L. & Gui, J.-F. Sex determination mechanisms and sex control approaches in aquaculture animals. Sci. China Life Sci 65, 1091–1122 (2022).
-
Kikuchi, M. et al. Novel components of germline sex determination acting downstream of foxl3 in medaka. Dev. Biol. 445, 80–89 (2019).
-
Kikuchi, M., Nishimura, T., Ishishita, S., Matsuda, Y. & Tanaka, M. foxl3, a sexual switch in germ cells, initiates two independent molecular pathways for commitment to oogenesis in medaka. Proc. Natl. Acad. Sci. USA 117, 12174–12181 (2020).
-
Dai, S. et al. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia. Development 148, https://doi.org/10.1242/dev.199380 (2021).
-
Josso, N. & di Clemente, N. TGF-beta Family Members and Gonadal Development. Trends Endocrinol. Metab. 10, 216–222 (1999).
-
Grinspon, R. P., Bergadá, I. & Rey, R. A. Male Hypogonadism and Disorders of Sex. Development. Front Endocrinol. (Lausanne) 11, 211 (2020).
-
Li, M. et al. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11, e1005678 (2015).
-
Zhang, Z., Zhu, B., Chen, W. & Ge, W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol. Cell Endocrinol. 517, 110963 (2020).
-
Morinaga, C. et al. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc. Natl. Acad. Sci. USA 104, 9691–9696 (2007).
-
Nakamura, S. et al. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development 139, 2283–2287 (2012).
-
Yi, W., Ross, J. M. & Zarkower, D. Mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans male sexual development and behavior. Development 127, 4469–4480 (2000).
-
Matsuda, M. et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563 (2002).
-
Masuyama, H. et al. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res. 20, 163–176 (2012).
-
Lewis, Z. R., McClellan, M. C., Postlethwait, J. H., Cresko, W. A. & Kaplan, R. H. Female-specific increase in primordial germ cells marks sex differentiation in threespine stickleback (Gasterosteus aculeatus). J. Morphol. 269, 909–921 (2008).
-
Li, Q., Fujii, W., Naito, K. & Yoshizaki, G. Application of dead end-knockout zebrafish as recipients of germ cell transplantation. Mol. Reprod. Dev. 84, 1100–1111 (2017).
-
Saito, D. et al. Proliferation of germ cells during gonadal sex differentiation in medaka: Insights from germ cell-depleted mutant zenzai. Dev. Biol. 310, 280–290 (2007).
-
Ye, D. et al. Identification of fish spermatogenic cells through high-throughput immunofluorescence against testis with an antibody set. Front Endocrinol 14, 1044318 (2023).
-
Luzio, A., Santos, D., Monteiro, S. M. & Coimbra, A. M. Zebrafish male differentiation: Do all testes go through a “juvenile ovary” stage? Tissue Cell 72, 101545 (2021).
-
Lau, E. S.-W., Zhang, Z., Qin, M. & Ge, W. Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas9 Leads to All-male Offspring Due to Failed Ovarian Differentiation. Sci. Rep. 6, 37357 (2016).
-
Nakamoto, M. et al. Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol. Cell Endocrinol. 460, 104–122 (2018).
-
Zhang, F. et al. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. J. Genet Genomics 47, 37–47 (2020).
-
Li, Y. et al. Endogenous biosynthesis of docosahexaenoic acid (DHA) regulates fish oocyte maturation by promoting pregnenolone production. Zool. Res. 45, 176–188 (2024).
-
Chen, Z. et al. Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids. Nat. Commun. 15, 9769 (2024).
-
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
-
Wang, Y. et al. Cyp11a2 Is Essential for Oocyte Development and Spermatogonial Stem Cell Differentiation in Zebrafish. Endocrinology 163, https://doi.org/10.1210/endocr/bqab258 (2022).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
