References
-
Smith, K. D., Prince, D. K., MacDonald, J. W., Bammler, T. K. & Akilesh, S. Challenges and opportunities for the clinical translation of spatial transcriptomics technologies. Glomerular Dis. 4, 49–63 (2024).
-
Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays 42, e1900221 (2020).
-
10x Genomics. https://www.10xgenomics.com/resources/datasets/ (2023).
-
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
-
Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).
-
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).
-
Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633 (2022).
-
Cho, C.-S. et al. Microscopic examination of spatial transcriptome using seq-scope. Cell 184, 3559–3572.e22 (2021).
-
Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).
-
Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).
-
Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).
-
Andersson, A. et al. Spatial mapping of cell types by integration of transcriptomics data. Commun. Biol. 3, 77 (2020).
-
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
-
Garmire, L. X. et al. Challenges and perspectives in computational deconvolution of genomics data. Nat. Methods 21, 391–400 (2024).
-
Xu, H. et al. SPACEL: deep learning-based characterization of spatial transcriptome architectures. Nat. Commun. 14, 7603 (2023).
-
Li, H., Li, H., Zhou, J. & Gao, X. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Bioinformatics. 38, 4878–4884 (2022).
-
Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023).
-
Wang, Y., Wan, Y. & Zhou, Y. SpatialcoGCN: deconvolution and spatial information–aware simulation of spatial transcriptomics data via deep graph co-embedding. Brief. Bioinform. 25, bbae130 (2024).
-
Coleman, K. et al. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning. Commun. Biol. 6, 378 (2023).
-
Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods 18, 1352–1362 (2021).
-
Bae, S. et al. CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data. Nucleic Acids Res. 50, e57 (2022).
-
Bae, S., Choi, H. & Lee, D. S. spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data. Genome Med. 15, 19 (2023).
-
Liu, Z. et al. SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics. Nat. Commun. 14, 4727 (2023).
-
Davis, J. & Goadrich, M. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006).
-
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
-
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature. 563, 72–78 (2018).
-
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
-
Yang, W. et al. Single-cell RNA reveals a tumorigenic microenvironment in the interface zone of human breast tumors. Breast Cancer Res. 25, 100 (2023).
-
Kumar, T. et al. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620, 181–191 (2023).
-
Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).
-
Carron, E. C. et al. Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget 8, 50731–50746 (2017).
-
Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).
-
Roy, M., Fowler, A. M., Ulaner, G. A. & Mahajan, A. Molecular Classification of Breast Cancer. PET Clin. 18, 441–458 (2023).
-
Song, Y. et al. DDHD2 is involved in the malignant progression of early luminal A breast cancer by changing cell membrane proteins and immune responses functionality. Oncol. Transl. Med. 10, 231–244 (2024).
-
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
-
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).
-
Fraley, C., Raftery, A. E., Murphy, T. B. & Scrucca, L. mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Report No. 597 (University of Washington, 2012).
-
Ganin, Y. et al. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1–35 (2016).
-
Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric. ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds. (ICLR, 2019).
-
Bock, S., & Weiß, M. A proof of local convergence for the Adam optimizer. IEEE International Joint Conference on Neural Networks (IEEE, 2019).
-
Kleshchevnikov V., et al. Single-nucleus RNA-seq from adult mouse brain sections paired to 10X Visium spatial RNA-seq. E-MTAB-11115, (EMBL-EBI, 2022).
-
Li, M. et al. DISCO: a database of deeply integrated human singlecell omics data. Nucleic Acids Res. 50, D596–D602 (2022).
-
Wu, Z. Processed datasets for DANST enables cell-type deconvolution in spatial transcriptomics using deep domain adversarial neural networks. Zenodo https://doi.org/10.5281/zenodo.18213061 (2026).
-
Wu, Z. ZhichaoWu7/DANST: First version for publication (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.18212150 (2026).
