Decellularized lymph node sections with preserved extracellular matrix for stromal cell culture

decellularized-lymph-node-sections-with-preserved-extracellular-matrix-for-stromal-cell-culture
Decellularized lymph node sections with preserved extracellular matrix for stromal cell culture

References

  1. Liao, S. & Padera, T. P. Lymphatic function and immune regulation in health and disease. Lymphat Res. Biol. 11, 136–143. https://doi.org/10.1089/lrb.2013.0012 (2013).

    Google Scholar 

  2. Li, L., Wu, J., Abdi, R., Jewell, C. M. & Bromberg, J. S. Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol. 42, 723–734. https://doi.org/10.1016/j.it.2021.06.006 (2021).

    Google Scholar 

  3. Saxena, V. et al. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol. Rev. 292, 9–23. https://doi.org/10.1111/imr.12799 (2019).

    Google Scholar 

  4. Knoblich, K. et al. The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation. Plos Biol. 16, e2005046. https://doi.org/10.1371/journal.pbio.2005046 (2018).

    Google Scholar 

  5. Li, L. et al. The lymph node stromal laminin alpha5 shapes alloimmunity. J. Clin. Invest. 130, 2602–2619. https://doi.org/10.1172/JCI135099 (2020).

    Google Scholar 

  6. Panocha, D., Roet, J. E. G., Kuipers, J. E., de Winde, C. M. & Mebius, R. E. Lymph node fibroblast-produced extracellular matrix shapes immune function. Trends Immunol. 46, 229–243. https://doi.org/10.1016/j.it.2025.02.002 (2025).

    Google Scholar 

  7. Berdiaki, A. et al. Extracellular matrix components and mechanosensing pathways in health and disease. Biomolecules https://doi.org/10.3390/biom14091186 (2024).

    Google Scholar 

  8. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29. https://doi.org/10.1016/j.immuni.2004.11.013 (2005).

    Google Scholar 

  9. Longstreth, J. H. & Wang, K. The role of fibronectin in mediating cell migration. Am. J. Physiol. Cell. Physiol. 326, C1212–C1225. https://doi.org/10.1152/ajpcell.00633.2023 (2024).

    Google Scholar 

  10. Tremmel, D. M. et al. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci. Rep. 12, 7188. https://doi.org/10.1038/s41598-022-11085-z (2022).

    Google Scholar 

  11. Bogdani, M. et al. Extracellular matrix components in the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 14, 552. https://doi.org/10.1007/s11892-014-0552-7 (2014).

    Google Scholar 

  12. Brown, T. J., Kimpton, W. G. & Fraser, J. R. Biosynthesis of glycosaminoglycans and proteoglycans by the lymph node. Glycoconj J. 17, 795–805. https://doi.org/10.1023/a:1010940826602 (2000).

    Google Scholar 

  13. Kaldjian, E. P., Gretz, J. E., Anderson, A. O., Shi, Y. & Shaw, S. Spatial and molecular organization of lymph node T cell cortex: A labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix. Int. Immunol. 13, 1243–1253. https://doi.org/10.1093/intimm/13.10.1243 (2001).

    Google Scholar 

  14. Sleeboom, J. J. F. et al. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci. Transl. Med. 16, eadg3840. https://doi.org/10.1126/scitranslmed.adg3840 (2024).

    Google Scholar 

  15. Karsdal, M. et al. Advances in extracellular matrix-associated diagnostics and therapeutics. J. Clin. Med. https://doi.org/10.3390/jcm14061856 (2025).

    Google Scholar 

  16. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253. https://doi.org/10.15252/embr.201439246 (2014).

    Google Scholar 

  17. Willcox, A. et al. Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia 60, 1294–1303. https://doi.org/10.1007/s00125-017-4221-7 (2017).

    Google Scholar 

  18. Sun, F. et al. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell. Biosci. 13, 156. https://doi.org/10.1186/s13578-023-01110-7 (2023).

    Google Scholar 

  19. Gonzalez Badillo, F. et al. Tissue-engineered stromal reticula to study lymph node fibroblastic reticular cells in type I diabetes. Cell. Mol. Bioeng. 13, 419–434. https://doi.org/10.1007/s12195-020-00627-y (2020).

    Google Scholar 

  20. Hahnlein, J. S. et al. Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis. Arthritis Res. Ther. 20, 35. https://doi.org/10.1186/s13075-018-1529-8 (2018).

    Google Scholar 

  21. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057 (2011).

    Google Scholar 

  22. Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878. https://doi.org/10.1038/s41467-023-36582-1 (2023).

    Google Scholar 

  23. Petrou, C. L. et al. Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro. J. Mater. Chem. B 8, 6814–6826. https://doi.org/10.1039/d0tb00613k (2020).

    Google Scholar 

  24. da Palma, R. K. et al. Equine lung decellularization: A potential approach for in vitro modeling the role of the extracellular matrix in asthma. J. Tissue Eng. 9, 2041731418810164. https://doi.org/10.1177/2041731418810164 (2018).

    Google Scholar 

  25. Dosh, R. H., Jordan-Mahy, N., Sammon, C. & Le Maitre, C. L. Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. Sci. Rep. 9, 1812. https://doi.org/10.1038/s41598-019-38524-8 (2019).

    Google Scholar 

  26. Zhang, R. et al. Analysis of structural components of decellularized scaffolds in renal fibrosis. Bioact. Mater. 6, 2187–2197. https://doi.org/10.1016/j.bioactmat.2020.12.028 (2021).

    Google Scholar 

  27. Zhang, X. et al. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact. Mater. 10, 15–31. https://doi.org/10.1016/j.bioactmat.2021.09.014 (2022).

    Google Scholar 

  28. Lin, H. J. et al. Decellularized lymph node scaffolding as a carrier for dendritic cells to induce anti-tumor immunity. Pharmaceutics https://doi.org/10.3390/pharmaceutics11110553 (2019).

    Google Scholar 

  29. Kang, H. J. et al. Recellularized lymph node scaffolds with human adipose-derived stem cells enhance lymph node regeneration to improve lymphedema. Sci. Rep. 13, 5397. https://doi.org/10.1038/s41598-023-32473-z (2023).

    Google Scholar 

  30. Liu, J. et al. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. Exploration 5, 20230078. https://doi.org/10.1002/EXP.20230078 (2025).

    Google Scholar 

  31. Shevchuk, O. I. et al. Application of decellularization methods for scaffold production: Advantages, disadvantages, biosafety and modifications. Front. Bioeng. Biotechnol. 13, 1621641. https://doi.org/10.3389/fbioe.2025.1621641 (2025).

    Google Scholar 

  32. Cuzzone, D. A., Albano, N. J., Aschen, S. Z., Ghanta, S. & Mehrara, B. J. Decellularized lymph nodes as scaffolds for tissue engineered lymph nodes. Lymphat. Res. Biol. 13, 186–194. https://doi.org/10.1089/lrb.2013.0054 (2015).

    Google Scholar 

  33. Choi, Y. S. et al. Immunomodulatory scaffolds derived from lymph node extracellular matrices. ACS Appl. Mater. Interfaces 13, 14037–14049. https://doi.org/10.1021/acsami.1c02542 (2021).

    Google Scholar 

  34. Liu, S. et al. Vibratome sectioning of tumors to evaluate the interactions between nanoparticles and the tumor microenvironment ex-vivo. Front. Bioeng. Biotechnol. 10, 1007151. https://doi.org/10.3389/fbioe.2022.1007151 (2022).

    Google Scholar 

  35. Li, Y. et al. Precision vibratome for high-speed ultrathin biotissue cutting and organ-wide imaging. iScience 24, 103016. https://doi.org/10.1016/j.isci.2021.103016 (2021).

    Google Scholar 

  36. Siwczak, F., Hiller, C., Pfannkuche, H. & Schneider, M. R. Culture of vibrating microtome tissue slices as a 3D model in biomedical research. J. Biol. Eng. 17, 36. https://doi.org/10.1186/s13036-023-00357-5 (2023).

    Google Scholar 

  37. Wang, Q., Bechet, N. B. & Lindstedt, S. Automated vibratome sectioning of agarose-embedded lung tissue for multiplex fluorescence imaging. J. Vis. Exp. https://doi.org/10.3791/65943 (2023).

    Google Scholar 

  38. Doke, M. et al. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab. 35, 1944–1960. https://doi.org/10.1016/j.cmet.2023.10.001 (2023).

    Google Scholar 

  39. Panzer, J. K. et al. Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight https://doi.org/10.1172/jci.insight.134525 (2020).

    Google Scholar 

  40. He, L. & Deng, C. Recent advances in organotypic tissue slice cultures for anticancer drug development. Int. J. Biol. Sci. 18, 5885–5896. https://doi.org/10.7150/ijbs.78997 (2022).

    Google Scholar 

  41. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795. https://doi.org/10.1084/jem.20040254 (2004).

    Google Scholar 

  42. Teles, L. N. et al. Engineered macroporous gelatin scaffolds enhance lymph node fibroblastic reticular cell identity and enable diabetogenic T cell immunomodulation. Biomaterials 324, 123460. https://doi.org/10.1016/j.biomaterials.2025.123460 (2025).

    Google Scholar 

  43. Philips, C., Terrie, L., Muylle, E. & Thorrez, L. Determination of DNA content as quality control in decellularized tissues: Challenges and pitfalls. Regen Biomater. 11, 123. https://doi.org/10.1093/rb/rbae123 (2024).

    Google Scholar 

  44. Ban, E. & Kim, A. PicoGreen assay for nucleic acid quantification—Applications, challenges, and solutions. Anal. Biochem. 692, 115577. https://doi.org/10.1016/j.ab.2024.115577 (2024).

    Google Scholar 

  45. Cho, D. H., Aguayo, S. & Cartagena-Rivera, A. X. Atomic force microscopy-mediated mechanobiological profiling of complex human tissues. Biomaterials 303, 122389. https://doi.org/10.1016/j.biomaterials.2023.122389 (2023).

    Google Scholar 

  46. Ziebarth, N. M., Wojcikiewicz, E. P., Manns, F., Moy, V. T. & Parel, J. M. Atomic force microscopy measurements of lens elasticity in monkey eyes. Mol. Vis. 13, 504–510 (2007).

    Google Scholar 

  47. Fletcher, A. L. et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front. Immunol. 2, 35. https://doi.org/10.3389/fimmu.2011.00035 (2011).

    Google Scholar 

  48. Krishnamurthy, B. et al. Autoimmunity to both proinsulin and IGRP is required for diabetes in nonobese diabetic 8.3 TCR transgenic mice. J. Immunol. 180, 4458–4464. https://doi.org/10.4049/jimmunol.180.7.4458 (2008).

    Google Scholar 

  49. Gilpin, A. & Yang, Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed. Res. Int. 2017, 9831534. https://doi.org/10.1155/2017/9831534 (2017).

    Google Scholar 

  50. Faulk, D. M. et al. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10, 183–193. https://doi.org/10.1016/j.actbio.2013.09.006 (2014).

    Google Scholar 

  51. White, L. J. et al. The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomater. 50, 207–219. https://doi.org/10.1016/j.actbio.2016.12.033 (2017).

    Google Scholar 

  52. Yue, B. Biology of the extracellular matrix: An overview. J Glaucoma 23, S20-23. https://doi.org/10.1097/IJG.0000000000000108 (2014).

    Google Scholar 

  53. Roet, J. E. G. et al. Human lymph node fibroblastic reticular cells maintain heterogeneous characteristics in culture. iScience 27, 110179. https://doi.org/10.1016/j.isci.2024.110179 (2024).

    Google Scholar 

  54. Horikawa, S. et al. PDGFRalpha plays a crucial role in connective tissue remodeling. Sci. Rep. 5, 17948. https://doi.org/10.1038/srep17948 (2015).

    Google Scholar 

  55. Kang, X. et al. Pdgfralpha(+) stromal cells, a key regulator for tissue homeostasis and dysfunction in distinct organs. Genes. Dis. 12, 101264. https://doi.org/10.1016/j.gendis.2024.101264 (2025).

    Google Scholar 

  56. Yao, L. et al. Temporal control of PDGFRalpha regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 40, 111192. https://doi.org/10.1016/j.celrep.2022.111192 (2022).

    Google Scholar 

  57. Huang, J. et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target Ther. 6, 153. https://doi.org/10.1038/s41392-021-00544-0 (2021).

    Google Scholar 

  58. Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 22, 48. https://doi.org/10.1186/s12943-023-01744-8 (2023).

    Google Scholar 

  59. Marangio, A. et al. The study of the extracellular matrix in chronic inflammation: A way to prevent cancer initiation?. Cancers https://doi.org/10.3390/cancers14235903 (2022).

    Google Scholar 

  60. Liao, Z. et al. Lymph node-biomimetic scaffold boosts CAR-T therapy against solid tumor. Natl. Sci. Rev. 11, nwae018. https://doi.org/10.1093/nsr/nwae018 (2024).

    Google Scholar 

  61. Liu, B. et al. An engineered lymph node comprising porous collagen scaffold with hybridized biological signals embedded in B cell membrane coatings. Biomaterials 304, 122420. https://doi.org/10.1016/j.biomaterials.2023.122420 (2024).

    Google Scholar 

  62. Ozulumba, T., Montalbine, A. N., Ortiz-Cardenas, J. E. & Pompano, R. R. New tools for immunologists: Models of lymph node function from cells to tissues. Front. Immunol. 14, 1183286. https://doi.org/10.3389/fimmu.2023.1183286 (2023).

    Google Scholar 

  63. Shou, Y., Johnson, S. C., Quek, Y. J., Li, X. & Tay, A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater. Today Bio. 14, 100269. https://doi.org/10.1016/j.mtbio.2022.100269 (2022).

    Google Scholar 

  64. Wang, Q. et al. Lymph node-on-chip technology: Cutting-edge advances in immune microenvironment simulation. Pharmaceutics https://doi.org/10.3390/pharmaceutics16050666 (2024).

    Google Scholar 

  65. Neishabouri, A., Soltani Khaboushan, A., Daghigh, F., Kajbafzadeh, A. M. & Majidi Zolbin, M. Decellularization in tissue engineering and regenerative medicine: Evaluation, modification, and application methods. Front. Bioeng. Biotechnol. 10, 805299. https://doi.org/10.3389/fbioe.2022.805299 (2022).

    Google Scholar 

  66. Fernandez-Perez, J. & Ahearne, M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci. Rep. 9, 14933. https://doi.org/10.1038/s41598-019-49575-2 (2019).

    Google Scholar 

  67. Moffat, D., Ye, K. & Jin, S. Decellularization for the retention of tissue niches. J. Tissue Eng. 13, 20417314221101150. https://doi.org/10.1177/20417314221101151 (2022).

    Google Scholar 

  68. Kalli, M., Poskus, M. D., Stylianopoulos, T. & Zervantonakis, I. K. Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer 9, 937–954. https://doi.org/10.1016/j.trecan.2023.07.006 (2023).

    Google Scholar 

  69. Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 34, 409–424. https://doi.org/10.1080/01926230600867727 (2006).

    Google Scholar 

  70. Wang, B. et al. Ultrasound elastography for the evaluation of lymph nodes. Front. Oncol. 11, 714660. https://doi.org/10.3389/fonc.2021.714660 (2021).

    Google Scholar 

  71. Qin, Q., Wang, D., Xu, L., Lan, Y. & Tong, M. Evaluating lymph node stiffness to differentiate bacterial cervical lymphadenitis and lymph node-first presentation of Kawasaki disease by shear wave elastography. J. Ultrasound Med. 40, 1371–1380. https://doi.org/10.1002/jum.15518 (2021).

    Google Scholar 

  72. Herman, J. et al. The role of ultrasound and shear-wave elastography in evaluation of cervical lymph nodes. Biomed. Res. Int. 2019, 4318251. https://doi.org/10.1155/2019/4318251 (2019).

    Google Scholar 

  73. Assen, F. P. et al. Multitier mechanics control stromal adaptations in the swelling lymph node. Nat. Immunol. 23, 1246–1255. https://doi.org/10.1038/s41590-022-01257-4 (2022).

    Google Scholar 

  74. Hwang, J. et al. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. 53, 268–278. https://doi.org/10.1016/j.actbio.2017.01.079 (2017).

    Google Scholar 

  75. Jarde, T. et al. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun. 7, 13207. https://doi.org/10.1038/ncomms13207 (2016).

    Google Scholar 

  76. Li, X., Ootani, A. & Kuo, C. An air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol. Biol 1422, 33–40. https://doi.org/10.1007/978-1-4939-3603-8_4 (2016).

    Google Scholar 

  77. Valdoz, J. C. et al. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 283, 121464. https://doi.org/10.1016/j.biomaterials.2022.121464 (2022).

    Google Scholar 

Download references