Decidualization-empowered ECM hydrogel integrating sustained Tβ4 release drives endometrial regeneration in intrauterine adhesions

decidualization-empowered-ecm-hydrogel-integrating-sustained-tβ4-release-drives-endometrial-regeneration-in-intrauterine-adhesions
Decidualization-empowered ECM hydrogel integrating sustained Tβ4 release drives endometrial regeneration in intrauterine adhesions

Data availability

The data and statistical evaluations supporting the findings of this study are available within the article, the Supplementary Information, and the Source Data file. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with accession PXD064077Source data are provided with this paper.

References

  1. Shevach, F. et al. Incidence of post-abortion intra-uterine adhesions evaluated by hysteroscopy—a prospective study. Hum. Reprod. 8, 442–444 (1993).

    Google Scholar 

  2. Wang, P. H. et al. Intrauterine adhesion. Taiwan J. Obstet. Gynecol. 63, 312–319 (2024).

    Google Scholar 

  3. Zhao, G. & Hu, Y. Mechanistic insights into intrauterine adhesions. Semin. Immunopathol. 47, 3 (2024).

    Google Scholar 

  4. Hooker, A. B. et al. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome. Hum. Reprod. Update 20, 262–278 (2014).

    Google Scholar 

  5. Wang, P.-H. et al. Intrauterine adhesion. Taiwan. J. Obstet. Gynecol. 63, 312–319 (2024).

    Google Scholar 

  6. Rodríguez-Eguren, A. et al. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum. Reprod. Update 30, 584–613 (2024).

    Google Scholar 

  7. Yao, S. et al. Targeting endometrial inflammation in intrauterine adhesion ameliorates endometrial fibrosis by priming MSCs to secrete C1INH. iScience 26, 107201 (2023).

    Google Scholar 

  8. Zhu, Q. et al. Ferroptosis contributes to endometrial fibrosis in intrauterine adhesions. Free Radic. Biol. Med. 205, 151–162 (2023).

    Google Scholar 

  9. Liang, Y. et al. Ru single-atom nanozymes targeting ROS-ferroptosis pathways for enhanced endometrial regeneration in intrauterine adhesion therapy. Biomaterials 315, 122923 (2025).

    Google Scholar 

  10. Chenchen, L. et al. A Dopamine-modified hyaluronic acid-based mucus carrying phytoestrogen and urinary exosome for thin endometrium repair. Adv. Mater. 36, e2407750 (2024).

  11. Jurado-Aguilar, J. et al. GDF15 activates AMPK and inhibits gluconeogenesis and fibrosis in the liver by attenuating the TGF-β1/SMAD3 pathway. Metabolism 152, 155772 (2024).

    Google Scholar 

  12. Evans, J. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 12, 654–667 (2016).

    Google Scholar 

  13. Popli, P. et al. Beclin-1-dependent autophagy, but not apoptosis, is critical for stem-cell-mediated endometrial programming and the establishment of pregnancy. Dev. Cell 58, 885–897.e4 (2023).

    Google Scholar 

  14. Ang, C. J., Skokan, T. D. & McKinley, K. L. Mechanisms of regeneration and fibrosis in the endometrium. Annu. Rev. Cell Dev. Biol. 39, 197–221 (2023).

    Google Scholar 

  15. Jia, M. et al. Hydrogel strategies for female reproduction dysfunction. ACS Nano 18, 30132–30152 (2024).

    Google Scholar 

  16. Shuai, Q. et al. Sodium alginate hydrogel integrated with type III collagen and mesenchymal stem cell to promote endometrium regeneration and fertility restoration. Int. J. Biol. Macromol. 253, 127314 (2023).

    Google Scholar 

  17. Kuan, C. H. et al. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. Biomaterials 314, 122848 (2025).

    Google Scholar 

  18. Zhu, Y. et al. Developing biomedical engineering technologies for reproductive medicine. Smart Med. 1, e20220006 (2022).

    Google Scholar 

  19. Golebiowska, A. A. et al. Decellularized extracellular matrix biomaterials for regenerative therapies: advances, challenges and clinical prospects. Bioact. Mater. 32, 98–123 (2024).

    Google Scholar 

  20. Zhang, X. et al. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact. Mater. 10, 15–31 (2022).

    Google Scholar 

  21. Yi, X. et al. Reconstructable uterus-derived materials for uterus recovery toward efficient live births. Adv. Mater. 34, e2106510 (2022).

    Google Scholar 

  22. Zhao, L. M. et al. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. Sci. Adv. 9, eadi6488 (2023).

    Google Scholar 

  23. Ahn, J. et al. Uterus-derived decellularized extracellular matrix-mediated endometrial regeneration and fertility enhancement. Adv. Funct. Mater. 33, 221429 (2023).

    Google Scholar 

  24. Cha, E. et al. Uterus-mimetic extracellular microenvironment for engineering female reproductive system. Adv. Funct. Mater. 35, 2415149 (2024).

  25. Martínez-López, C. et al. Characterization of decellularized porcine oviduct- and uterine-derived scaffolds evaluated by spermatozoa-based biocompatibility and biotoxicity. Theriogenology 231, 36–51 (2025).

    Google Scholar 

  26. Xulin, H. et al. Cyclical endometrial repair and regeneration: molecular mechanisms, diseases, and therapeutic interventions. MedComm 4, e425 (2023).

    Google Scholar 

  27. Yang, Z. S. et al. Regulation and function of laminin A5 during mouse and human decidualization. Int. J. Mol. Sci. 23, 199 (2021).

    Google Scholar 

  28. Claire, J. A., Taylor, D. S. & Kara, L. M. Mechanisms of regeneration and fibrosis in the endometrium. Annu. Rev. Cell Dev. Biol. 39, 197–221 (2023).

    Google Scholar 

  29. Kim, Y. Y. et al. Synergistic regenerative effects of functionalized endometrial stromal cells with hyaluronic acid hydrogel in a murine model of uterine damage. Acta Biomater. 89, 139–151 (2019).

    Google Scholar 

  30. Ma, Q. et al. Extracellular vesicles secreted by human uterine stromal cells regulate decidualization, angiogenesis, and trophoblast differentiation. Proc. Natl. Acad. Sci. USA 119, e2200252119 (2022).

    Google Scholar 

  31. Liang, Y. et al. Incorporation of decidual stromal cells derived exosomes in sodium alginate hydrogel as an innovative therapeutic strategy for advancing endometrial regeneration and reinstating fertility. Adv. Health. Mater. 13, e2303674 (2024).

    Google Scholar 

  32. Li, H. et al. Exosomes based strategies for cardiovascular diseases: opportunities and challenges. Biomaterials 308, 122544 (2024).

    Google Scholar 

  33. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Google Scholar 

  34. Smart, N. et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    Google Scholar 

  35. Xing, Y. et al. Progress on the function and application of thymosin β4. Front. Endocrinol. (Lausanne) 12, 767785 (2021).

    Google Scholar 

  36. Huang, Z. et al. Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles. Int. J. Nanomed. 12, 3023–3036 (2017).

    Google Scholar 

  37. Gellersen, B. & Brosens, J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J. Endocrinol. 178, 357–372 (2003).

    Google Scholar 

  38. Lee, S. H., Kim, B. J. & Kim, U. H. The critical role of uterine CD31 as a post-progesterone signal in early pregnancy. Reproduction 154, 595–605 (2017).

    Google Scholar 

  39. Tan, J. et al. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse1. Endocrinology 140, 5310–5321 (1999).

    Google Scholar 

  40. Huyen, D. V. & Bany, B. M. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction 142, 353–368 (2011).

    Google Scholar 

  41. Jia, Z. et al. Foxa2-dependent uterine glandular cell differentiation is essential for successful implantation. Nat. Commun. 16, 2465 (2025).

    Google Scholar 

  42. Wang, C. et al. Comparative analysis of mouse decidualization models at the molecular level. Genes (Basel) 11, 935 (2020).

    Google Scholar 

  43. Herington, J. L. et al. Paracrine signals from the mouse conceptus are not required for the normal progression of decidualization. Endocrinology 150, 4404–4413 (2009).

    Google Scholar 

  44. Meihan, T. et al. Sterilization and disinfection methods for decellularized matrix materials: review, consideration and proposal. Bioact. Mater. 6, 2927–2945 (2021).

    Google Scholar 

  45. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Google Scholar 

  46. Yoshinobu, K. & Kaoru, M. The basement membrane protein laminin-5 acts as a soluble cell motility factor. Exp. Cell Res. 297, 508–520 (2004).

    Google Scholar 

  47. Tong, L. et al. S100A proteins as molecular targets in the ocular surface inflammatory diseases. Ocul. Surf. 12, 23–31 (2014).

    Google Scholar 

  48. Gellersen, B. & Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905 (2014).

    Google Scholar 

  49. Shi, J. W. et al. Collagen at the maternal-fetal interface in human pregnancy. Int. J. Biol. Sci. 16, 2220–2234 (2020).

    Google Scholar 

  50. Cha, J., Sun, X. & Dey, S. K. Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 18, 1754–1767 (2012).

    Google Scholar 

  51. Hynda, K. K., Veronika, K. & Allan, L. G. Thymosin β4 and the anti-fibrotic switch. Int. Immunopharmacol. 115, 109628 (2023).

    Google Scholar 

  52. Guangfeng, Z. & Yali, H. Mechanistic insights into intrauterine adhesions. Semin. Immunopathol. 47, 3 (2024).

    Google Scholar 

  53. Kelleher, A. M. et al. Forkhead box a2 (FOXA2) is essential for uterine function and fertility. Proc. Natl. Acad. Sci. USA 114, E1018–e1026 (2017).

    Google Scholar 

  54. Kelleher, A. M., DeMayo, F. J. & Spencer, T. E. Uterine glands: developmental biology and functional roles in pregnancy. Endocr. Rev. 40, 1424–1445 (2019).

    Google Scholar 

  55. Jung-Hwan, L. et al. Adaptive immunity of materials: implications for tissue healing and regeneration. Bioact. Mater. 41, 499–522 (2024).

    Google Scholar 

  56. Wang, Y. Y. et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J. Am. Soc. Nephrol. 28, 2053–2067 (2017).

    Google Scholar 

  57. Huijun, S. et al. TSG6-Exo@CS/GP attenuates endometrium fibrosis by inhibiting macrophage activation in a murine IUA model. Adv. Mater. 36, e2308921 (2024).

    Google Scholar 

  58. Wu, B. et al. Reconstructing lineage hierarchies of mouse uterus epithelial development using single-cell analysis. Stem Cell Rep. 9, 381–396 (2017).

    Google Scholar 

  59. Becky, K. B. et al. Cysteine-rich domain of type III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biol. 109, 19–33 (2022).

    Google Scholar 

  60. Bruce, A. L. & Steven, L. Y. What exactly is endometrial receptivity? Fertil. Steril. 111, 611–617 (2019).

    Google Scholar 

  61. Liang, Y. X. et al. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. Sci. Rep. 8, 712 (2018).

    Google Scholar 

  62. Hu, W. et al. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis. 10, 831 (2019).

    Google Scholar 

  63. Liang, Y. et al. 1-Nitropyrene exposure impairs embryo implantation through disrupting endometrial receptivity genes expression and producing excessive ROS. Ecotoxicol. Environ. Saf. 227, 112939 (2021).

    Google Scholar 

  64. Shao, X. et al. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 48, D1136–d1144 (2020).

    Google Scholar 

  65. Liu, L. et al. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway. Stem Cell Res. Ther. 11, 479 (2020).

    Google Scholar 

  66. Tian, Z. et al. Thymosin β4 suppresses LPS-induced murine lung fibrosis by attenuating oxidative injury and alleviating inflammation. Inflammation 45, 59–73 (2022).

    Google Scholar 

  67. Qi, J. et al. Locationally activated PRP via an injectable dual-network hydrogel for endometrial regeneration. Biomaterials 309, 122615 (2024).

    Google Scholar 

  68. Cao, Y. et al. Injectable “homing-like” bioactive short-fibers for endometrial repair and efficient live births. Adv. Sci. 11, e2306507 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China[U23A20420] (J.X.); Shanxi Province Higher Education “Billion Project” Science and Technology Guidance Project [BYBLD006] (J.X.); National Key R&D program[2021YFC2301603] (J.X.)

Author information

Authors and Affiliations

  1. Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China

    Yuxiang Liang, Zhaowei Yu, Shaobo Du, Yuqian Guo, Jing Li, Yujia Yan, Shanshan Jin, Wenjing Liang, Mengyuan Li, Ning Jin, Jiao Yang, Zhiwei Peng, Zhizhen Liu, Qizhi Shuai, Liping Li & Jun Xie

  2. Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China

    Yuxiang Liang & Zhaoyang Chen

  3. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China

    Hailan Yang

Authors

  1. Yuxiang Liang
  2. Zhaowei Yu
  3. Shaobo Du
  4. Yuqian Guo
  5. Jing Li
  6. Yujia Yan
  7. Shanshan Jin
  8. Wenjing Liang
  9. Mengyuan Li
  10. Ning Jin
  11. Jiao Yang
  12. Zhiwei Peng
  13. Zhaoyang Chen
  14. Hailan Yang
  15. Zhizhen Liu
  16. Qizhi Shuai
  17. Liping Li
  18. Jun Xie

Contributions

Y.X.L., Z.Z.L., QZ.S., LP.L., and J.X. conceived the concept and designed the experiments. Y.X.L., Z.W.Y., and SB.D. synthesized the Tβ4@PLGA microspheres and prepared the composite hydrogels. YX.L., Z.W.Y., Y.Q.G., J.L., and Y.J.Y. performed the material characterization and in vitro cellular assays. Z.W.Y., S.S.J., N.J. J.Y., Z.W.P., and W.J.L. S.S.J., N.J. J.Y., Z.W.P., and W.J.L. established the IUA mouse model, performed the animal surgeries, and conducted the in vivo therapeutic evaluations. Z.Y.C., H.L.Y., N.J. Z.Z.L., and Q.Z.S. assisted with the histological staining, flow cytometry, and Western blot analyses. Y.X.L. and L.P.L. analyzed the data and wrote the original draft of the manuscript. Y.X.L. and J.X. supervised the study, provided resources, and reviewed and edited the manuscript. All authors discussed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yuxiang Liang, Zhizhen Liu, Qizhi Shuai, Liping Li or Jun Xie.

Ethics declarations

Competing interests

Yuxiang Liang, Jun Xie, Mengyuan Li, Zhiwei Peng, and Zhizhen Liu have submitted a patent application to the China National Intellectual Property Administration (CNIPA) pertaining to the preparation and application of the composite hydrogel system described in this work (application number 202511595392.5). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yi Wang, who co-reviewed with Zhongyi Zhu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yu, Z., Du, S. et al. Decidualization-empowered ECM hydrogel integrating sustained Tβ4 release drives endometrial regeneration in intrauterine adhesions. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68677-w