Demethylmycemycin A, a dibenzoxazepinone from the marine-derived Dactylosporangium sp. OK1079, with prostate cancer suppressive effects via targeting BRK-FAK-STAT3 axis

demethylmycemycin-a,-a-dibenzoxazepinone-from-the-marine-derived-dactylosporangium-sp.-ok1079,-with-prostate-cancer-suppressive-effects-via-targeting-brk-fak-stat3-axis
Demethylmycemycin A, a dibenzoxazepinone from the marine-derived Dactylosporangium sp. OK1079, with prostate cancer suppressive effects via targeting BRK-FAK-STAT3 axis

References

  1. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alwanian WM, Tyner AL. Protein tyrosine kinase 6 signaling in prostate cancer. Am J Clin Exp Urol. 2020;8:1–8.

    PubMed  PubMed Central  Google Scholar 

  3. Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, et al. Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci. 2011;02:2022–8.

    Article  Google Scholar 

  4. Wozniak DJ, Hitchinson B, Gilic MB, Bie W, Gaponenko V, Tyner AL. Vemurafenib inhibits active PTK6 in PTEN-null prostate tumor cells. Mol Cancer Ther. 2019;18:937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmed NA, Mohyeldin MM, Ebrahim HY, McGehee OC, Tarun MTI, El Sayed KA. (−)-Oleuropein as a novel metastatic castration-resistant prostate cancer progression and recurrence suppressor via targeting PCSK9-LDLR Axis. Nutrients. 2025;17:1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK 6) signalling in prostate cancer. Eur J Clin Investig. 2013;43:397–404.

    Article  CAS  Google Scholar 

  7. Kasprzycka M, Majewski M, Wang Z-J, Ptasznik A, Wysocka M, Zhang Q, et al. Expression and oncogenic role of Brk (PTK6/Sik) protein tyrosine kinase in lymphocytes. Am J Pathol. 2006;168:1631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ang HL, Yuan Y, Lai X, Tan TZ, Wang L, Huang BB, et al. Putting the BRK on breast cancer: From molecular target to therapeutics. Theranostics. 2021;11:1115–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu L, Gao Y, Qiu H, Miller W, Poli V, Reich N. Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene. 2006;25:4904–12.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene. 2013;32:4304–12.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Yang Z, Qin X, Ma J, Sun C, Huang H, et al. Genome mining for mycemycin: discovery and elucidation of related methylation and chlorination biosynthetic chemistries. Org Lett. 2018;20:7633–36.

    Article  CAS  PubMed  Google Scholar 

  12. Hunziker vF, Künzle F, Schindler O, Schmutz J. Dibenzo-azepine,-diazepine,-Oxazepine und-thiazepine. 3. Mitteilung über siebengliedrige Heterocyclen. Helv Chim Acta. 1964;47:1163–72.

    Article  CAS  Google Scholar 

  13. Shen C, Neumann H, Wu X-F. A highly-efficient palladium-catalyzed aminocarbonylation/SN Ar approach to dibenzoxazepinones. Green Chem. 2015;17:2994–9.

    Article  CAS  Google Scholar 

  14. Sapegin AV, Sakharov VN, Kalandadze LS, Smirnov AV, Khristolyubova TA, Plakhtinskii VV, et al. Synthesis of dibenzo [b, f][1, 4] oxazepin-11 (10H)-one and pyrido [2, 3-b][1, 4] benzoxazepin-10 (11H)-one compounds based on O-nitrochloro derivatives of benzene and pyridine. Mendeleev Commun. 2008;5:281–3.

    Article  Google Scholar 

  15. Anchan K, Baburajan P, Puttappa NH, Kumar Sarkar S. One-pot synthesis of substituted dibenzoxazepinones and pyridobenzoxazepinones using octacarbonyldicobalt as an effective CO source. Synth Commun. 2020;50:348–60.

    Article  CAS  Google Scholar 

  16. Azad I, Anand P, Ahmad N, Hassan F, Faiyyaz M, Akhter Y. Determination of anticancer activity and mechanism of action of benzooxazepines (BZOs) derivatives using multipronged computational and structural approaches. Chem Phys. 2024;581:112243.

    Article  CAS  Google Scholar 

  17. Liu N, Song F, Shang F, Huang Y. Mycemycins A–E, new dibenzoxazepinones isolated from two different Streptomycetes. Mar Drugs. 2015;13:6247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W, Ma L, Zhang L, Chen Y, Zhang Q, Zhang H, et al. Two new phenylhydrazone derivatives from the Pearl River Estuary sediment-derived Streptomyces sp. SCSIO 40020. Mar Drugs. 2022;20:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiorentino A, D’Abrosca B, Pacifico S, Cefarelli G, Uzzo P, Monaco P. Natural dibenzoxazepinones from leaves of Carex distachya: Structural elucidation and radical scavenging activity. Bioorg Med Chem Lett. 2007;17:636–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol. 2017;8:1106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thiemann J, Pagani H, Beretta G. A new genus of the Actinoplanaceae: Dactylosporangium, gen. nov. Arch Mikrobiol. 1967;58:42–52.

    Article  CAS  PubMed  Google Scholar 

  22. Wellis JS, O’Sullivan J, Aklonis C, Ax HA, Tymiak AA, Kirsch DR, et al. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. I. Taxonomy, production, isolation and biological activity. J Antibiot. 1992;45:1892–8.

    Article  Google Scholar 

  23. Satoi S, Awata M, Muto N, Hayashi M, Sagai H, Otani M. A new aminoglycoside antibiotic G-367 S1, 2’-N-formylsisomicin fermentation, isolation and characterization. J Antibiot. 1983;36:1–5.

    Article  CAS  Google Scholar 

  24. Theriault RJ, Karwowski JP, Jakson M, Girolami RL, Sunga GN, Votko CM, et al. Tiacumicins, a novel complex of 18-membered macrolide antibiotics I. Taxonomy, fermentation and antibacterial activity. J Antibiot. 1987;40:567–74.

    Article  CAS  Google Scholar 

  25. Elsbaey M, Jomori T, Tanaka J, Oku N, Igarashi Y. Okichromanone, a new antiviral chromanone from a marine-derived Microbispora. J Antibiot. 2024;77:389–92.

    Article  CAS  Google Scholar 

  26. Elsbaey M, Samaru Y, Elekhnawy E, Oku N, Igarashi Y. A new polycyclic tetramate macrolactam from Allostreptomyces RD068384: stereochemistry and antifungal potential. J Antibiot. 2024;77:393–6.

    Article  CAS  Google Scholar 

  27. Binaschi M, Boldetti A, Gianni M, Maggi CA, Gensini M, Bigioni M, et al. Antiproliferative and differentiating activities of a novel series of histone deacetylase inhibitors. ACS Med Chem Lett. 2010;1:411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foudah AI, Jain S, Busnena BA, El Sayed KA. Optimization of marine triterpene sipholenols as inhibitors of breast cancer migration and invasion. ChemMedChem. 2013;8:497–510.

    Article  CAS  PubMed  Google Scholar 

  29. Foudah AI, Sallam AA, Akl MR, El Sayed KA. Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors. Eur J Med Chem. 2014;73:310–24.

    Article  CAS  PubMed  Google Scholar 

  30. Akl MR, Foudah AI, Ebrahim HY, Meyer SA, Sayed KAE. The marine-derived sipholenol A-4-O-3′,4′-dichlorobenzoate inhibits breast cancer growth and motility in vitro and in vivo through the suppression of Brk and FAK signaling. Mar Drugs. 2014;12:2282–304.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Siddique AB, Ebrahim HY, Tajmim A, King JA, Abdelwahed KS, Abd Elmageed ZY, et al. Oleocanthal attenuates metastatic castration-resistant prostate cancer progression and recurrence by targeting SMYD2. Cancers. 2022;14:3542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thakur MK, Birudukota S, Swaminathan S, Battula SK, Vadivelu S, Tyagi R, et al. Co-crystal structures of PTK6: With Dasatinib at 2.24 Å, with novel imidazo[1,2-a]pyrazin-8-amine derivative inhibitor at 1.70 Å resolution. Biochem Biophys Res Commun. 2017;482:1289–95.

    Article  CAS  PubMed  Google Scholar 

  33. Lietha D, Eck MJ. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. PLoS ONE. 2008;3:e3800.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ceccarelli DFJ, Song HK, Poy F, Schaller MD, Eck MJ. Crystal structure of the FERM domain of focal adhesion kinase. J Biol Chem. 2006;281:252–9.

    Article  CAS  PubMed  Google Scholar 

  35. Asiri AM, Ali AAAA, Abu-Alghayth MH. Targeting breast cancer with dasatinib derivatives: a multi-parameter strategy to uncover potent lead compounds. Int J Pharma Investig. 2024;14:1260–72.

    Article  CAS  Google Scholar 

  36. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17:5913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feyerabend S, Feil G, Krug J, Kassen A, Stenzl A. Cytotoxic effects of treosulfan on prostate cancer cell lines. Anticancer Res. 2007;27:2403–8.

    CAS  PubMed  Google Scholar 

  39. Cattrini C, Capaia M, Boccardo F, Barboro P. Etoposide and topoisomerase II inhibition for aggressive prostate cancer: Data from a translational study. Cancer Treat Res Commun. 2020;25:100221.

    PubMed  Google Scholar 

  40. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG. Cancer invasion and metastasis: molecular and cellular perspective. In: Madame Curie Bioscience Database. 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK164700/.

  41. Awasthi S, Gerke T, Park JY, Asamoah FA, Williams VL, Fink AK, et al. Optimizing time to treatment to achieve durable biochemical disease control after surgery in prostate cancer: a multi-institutional cohort study. Cancer Epidemiol Biomark Prev. 2019;28:570–7.

    Article  Google Scholar 

  42. Zelefsky MJ, Eastham JA, Cronin AM, Fuks Z, Zhang Z, Yamada Y, et al. Metastasis after radical prostatectomy or external beam radiotherapy for patients with clinically localized prostate cancer: a comparison of clinical cohorts adjusted for case mix. J Clin Oncol. 2010;28:1508–13.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Damen MP, van Rheenen J, Scheele CL. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 2021;288:6286–303.

    Article  CAS  PubMed  Google Scholar 

  44. Derry JJ, Prins GS, Ray V, Tyner AL. Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene. 2003;22:4212–20.

    Article  CAS  PubMed  Google Scholar 

  45. Miah S, Martin A, Lukong K. Constitutive activation of breast tumor kinase accelerates cell migration and tumor growth in vivo. Oncogenesis. 2012;1:e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen HY, Shen CH, Tsai YT, Lin FC, Huang YP, Chen RH. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol Cell Biol. 2004;24:10558–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Karmalawy AA, Mousa MHA, Sharaky M, Mourad MAE, El-Dessouki AM, Hamouda AO, et al. Lead optimization of BIBR1591 to improve its telomerase inhibitory activity: design and synthesis of novel four chemical series with in silico, in vitro, and in vivo preclinical assessments. J Med Chem. 2024;67:492–512.

    Article  CAS  PubMed  Google Scholar 

  48. Attia EZ, Khalifa BA, Shaban GM, Amin MN, Akil L, Khadra I, et al. Potential topoisomerases inhibitors from Aspergillus terreus using virtual screening. S Afr J Bot. 2022;149:632–45.

    Article  CAS  Google Scholar 

  49. Elkamhawy A, Son S, Lee HY, El-Maghrabey MH, Hamd MAE, Alshammari SO, et al. Design, synthesis, biological evaluation, and molecular dynamics studies of novel lapatinib derivatives. Pharm. 2023;16:43.

    CAS  Google Scholar 

  50. Hussein ME, Mohamed OG, El-Fishawy AM, El-Askary HI, Hamed AA, Abdel-Aziz MM, et al. Anticholinesterase activity of budmunchiamine alkaloids revealed by comparative chemical profiling of two Albizia spp., molecular docking and dynamic studies. Plants. 2022;11:3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS ONE. 2014;9:e92444.

    Article  PubMed  PubMed Central  Google Scholar 

Download references