References
-
Burke, R. M. et al. Impact of rotavirus vaccination on rotavirus hospitalizations in Taiwanese children. Vaccine 39(49), 7135–7139 (2021).
-
Crawford, S. E. et al. Rotavirus infection. Nat. Rev. Dis. Primers. 3(1), 1–16 (2017).
-
Marelli, B. et al. Oral immunization with live Lactococcus lactis expressing rotavirus VP8* subunit induces specific immune response in mice. J. Virol. Methods 175(1), 28–37 (2011).
-
Wen, X. et al. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic. Hum. Vaccin. Immunother. 11(10), 2483–2489 (2015).
-
Xue, M. et al. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum. Vaccin. Immunother. 12(11), 2959–2968 (2016).
-
Sadiq, A. & Bostan, N. Comparative analysis of G1P [8] rotaviruses identified prior to vaccine implementation in Pakistan with Rotarix™ and RotaTeq™ vaccine strains. Front. Immunol. 11, 562282 (2020).
-
Parashar, U.D., E.A.S. Nelson, and G. Kang, Diagnosis, management, and prevention of rotavirus gastroenteritis in children. Bmj, 2013. 347.
-
Davies, M. N. & Flower, D. R. Harnessing bioinformatics to discover new vaccines. Drug Discov. Today 12(9–10), 389–395 (2007).
-
Burke, R. M. et al. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 32(5), 435 (2019).
-
Perrie, Y. et al. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364(2), 272–280 (2008).
-
Lakatos, K. et al. Formulation and preclinical studies with a trivalent rotavirus P2-VP8 subunit vaccine. Hum. Vaccin. Immunother. 16(8), 1957–1968 (2020).
-
Wen, X. et al. Inclusion of a universal tetanus toxoid CD4+ T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines. Vaccine 32(35), 4420–4427 (2014).
-
Albekairi, T. H. et al. Design of a multi-epitope vaccine against tropheryma whipplei using immunoinformatics and molecular dynamics simulation techniques. Vaccines 10(5), 691 (2022).
-
Samad, A. et al. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn. 40(1), 14–30 (2022).
-
Sharma, A.D., et al., T cell epitope based vaccine design while targeting outer capsid proteins of rotavirus strains infecting neonates: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2023: p. 1–19.
-
Li, M. et al. Design of a multi-epitope vaccine candidate against Brucella melitensis. Sci. Rep. 12(1), 1–18 (2022).
-
Farhani, I., et al., Designing a Multi-epitope Vaccine against the SARS-CoV-2 Variant Based on an Immunoinformatics Approach. Current Computer-aided Drug Design, 2023.
-
Akhgar, S., et al., Immunization of BALB/c mice against Shigella sonnei using a multiepitope protein vaccine through intranasal and subcutaneous administration. Iranian J. Allergy, Asthma Immunol., 2024.
-
Vita, R. et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 47(D1), D339–D343 (2019).
-
Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics 32(4), 511–517 (2016).
-
Reynisson, B. et al. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(W1), W449–W454 (2020).
-
Mehta, N.K., et al., In silico tool for Predicting, Designing and Scanning IL-2 inducing peptides. bioRxiv, 2021: p. 2021.06. 20.449146.
-
Bui, H.-H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinf. 7(1), 1–5 (2006).
-
Jespersen, M. C. et al. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45(W1), W24–W29 (2017).
-
Singh, H., Ansari, H. R. & Raghava, G. P. Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS ONE 8(5), e62216 (2013).
-
Magnan, C. N. et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26(23), 2936–2943 (2010).
-
Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf. 8(1), 4 (2007).
-
Nguyen, M.N., et al., AllerCatPro 2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Research, 2022.
-
Sharma, N. et al. ToxinPred2: An improved method for predicting toxicity of proteins. Brief. Bioinf. 23(5), bbac174 (2022).
-
Hebditch, M. et al. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 33(19), 3098–3100 (2017).
-
Gasteiger, E., et al., Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 2005: p. 571–607.
-
Guruprasad, K., Reddy, B. B. & Pandit, M. W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 4(2), 155–161 (1990).
-
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 88(6), 1895–1898 (1980).
-
Kalita, P. et al. Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. Int. J. Biol. Macromol. 138, 224–233 (2019).
-
Zhao, S. et al. Secrets behind protein sequences: Unveiling the potential reasons for varying allergenicity caused by caseins from cows, goats, camels, and mares based on bioinformatics analyses. Int. J. Mol. Sci. 24(3), 2481 (2023).
-
Buchan, D. W. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47(W1), W402–W407 (2019).
-
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 5(4), 725–738 (2010).
-
Laskowski, R., M. MacArthur, and J. Thornton, PROCHECK: validation of protein-structure coordinates. 2006.
-
Ko, J. et al. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(W1), W294–W297 (2012).
-
Shuvo, M. H., Gulfam, M. & Bhattacharya, D. DeepRefiner: High-accuracy protein structure refinement by deep network calibration. Nucleic Acids Res. 49(W1), W147–W152 (2021).
-
Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(suppl_2), W407–W410 (2007).
-
Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinf. 9(1), 1–8 (2008).
-
Yan, Y. et al. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 15(5), 1829–1852 (2020).
-
Laskowski, R. A. et al. PDBsum: Structural summaries of PDB entries. Protein Sci. 27(1), 129–134 (2018).
-
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005).
-
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996).
-
Rapin, N., Lund, O. & Castiglione, F. Immune system simulation online. Bioinformatics 27(14), 2013–2014 (2011).
-
Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31(13), 3429–3431 (2003).
-
Suckow, M.A., K.A. Stevens, and R.P. Wilson, The laboratory rabbit, guinea pig, hamster, and other rodents. 2011: Academic Press.
-
Leenaars, M. & Hendriksen, C. F. Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J. 46(3), 269–279 (2005).
-
Saluja, T. et al. A multicenter prospective hospital-based surveillance to estimate the burden of rotavirus gastroenteritis in children less than five years of age in India. Vaccine 32, A13–A19 (2014).
-
Groome, M. J. et al. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: A multisite, randomised, double-blind, placebo-controlled trial. Lancet. Infect. Dis 20(7), 851–863 (2020).
-
Monavari, S. H. R. et al. Epidemiology of rotavirus in the Iranian children: A systematic review and meta-analysis. J. Global Infect. Dis. 9(2), 66–72 (2017).
-
Wang, N. et al. Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 11, 298 (2020).
-
Pambudi, N. A. et al. Vaccine cold chain management and cold storage technology to address the challenges of vaccination programs. Energy Rep. 8, 955–972 (2022).
-
Orr, M. T. et al. Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. J. Control. Release 177, 20–26 (2014).
-
Kaur, A. et al. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 70, 102172 (2022).
-
Kumar, A. et al. “ Universal” T helper cell determinants enhance immunogenicity of a Plasmodium falciparum merozoite surface antigen peptide. J. Immunol. 148(5), 1499–1505 (1992).
-
Hamley, I. W. Peptides for vaccine development. ACS Appl. Bio Mater. 5(3), 905–944 (2022).
-
Xia, M. et al. Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine 37(30), 4103–4110 (2019).
-
Xu, J. et al. Expression of Toll-like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea. Clin. Exp. Immunol. 144(3), 376–381 (2006).
-
Zhou, W.-Y. et al. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model. Vaccine 27(36), 5013–5019 (2009).
-
Vartak, A. & Sucheck, S. J. Recent advances in subunit vaccine carriers. Vaccines 4(2), 12 (2016).
-
Bagherpour, G. et al. Oral administration of recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front. Microbiol. 9, 723 (2018).
-
Pontrelli, S. et al. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50, 16–46 (2018).
-
McFarland, L. V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol: WJG 16(18), 2202 (2010).
-
Hudson, L. E. et al. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii. PLoS ONE 9(11), e112660 (2014).
-
Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5, 172 (2014).
-
Carlini, D. B. Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome. Mol. Biol. Evol. 22(6), 1403–1411 (2005).
-
Yamchi, A. et al. Evaluation of the impact of polypeptide-p on diabetic rats upon its cloning, expression, and secretion in Saccharomyces boulardii. Arch. Microbiol. 206(1), 37 (2024).
-
Chen, Y. et al. Truncated rotavirus VP4 proteins induce stronger protective immunity compared to P2-VP8 in animal models. Antiviral Res. 238, 106156 (2025).
