Design and implementation of an open-access arsenic biosensor

design-and-implementation-of-an-open-access-arsenic-biosensor
Design and implementation of an open-access arsenic biosensor

Data availability

All relevant data supporting the findings of this study are provided within the manuscript and its Supplementary Information files. Additional raw data (images, colorimetric outputs, Python scripts, and 3D design files) are openly available at GitHub SensAr-Biosensor under license CC-BY 4.0.

References

  1. Third edition. Laboratory biosafety manual. https://iris.who.int/bitstream/handle/10665/42981/9241546506_eng.pdf

  2. United Natios. General Assembly United Nations. Sixty-fourth session Agenda item. https://documents.un.org/doc/undoc/gen/n09/479/35/pdf/n0947935.pdf

  3. World Health Organization. Progress on drinking water, sanitation and hygiene in schools. https://cdn.who.int/media/docs/default-source/wash-documents/wash-in-schools_21june_launch.pdf?sfvrsn=565e89cd_3&download=true

  4. Water and the global climate crisis: 10 things you should know. https://www.unicef.org/stories/water-and-climate-change-10-things-you-should-know

  5. 1 in 3 people globally do not have access to safe drinking water – UNICEF & WHO., https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who

  6. Bhattacharya, P., Polya, D. & Jovanovic, D. Best Practice Guide on the Control of Arsenic in Drinking Water (IWA Publishing, 2017).

  7. Relationship between low. -level arsenic exposure in drinking water and kidney cancer risk in Texas. Environ. Pollut. 363, 125097 (2024).

    Google Scholar 

  8. Rahmani, A. et al. The association of arsenic exposure with mortality due to cancer, diabetes, alzheimer’s and congenital anomalies using Poisson regression. Sci. Rep. 13, 15456 (2023).

    Google Scholar 

  9. Sadee, B. A., Zebari, S. M. S., Galali, Y. & Saleem, M. F. A review on arsenic contamination in drinking water: sources, health impacts, and remediation approaches. RSC Adv. 15, 2684–2703 (2025).

    Google Scholar 

  10. Bardach, A. E. et al. Epidemiology of chronic disease related to arsenic in argentina: A systematic review. Sci. Total Environ. 538, 802–816 (2015).

    Google Scholar 

  11. Litter, M. I., Armienta, M. A., Estrada, V., Lepori, R. E. V. & Olmos, V. E. C. Arsenic in Latin America: Part II. in Arsenic in Drinking Water and Food 113–182 (Springer Singapore, Singapore, 2020).

  12. Litter, M. I., Armienta, M. A., Estrada, R. E. V., Lepori, E. C. V. & Olmos, V. Arsenic in Drinking Water and Food (Springer Singapore, 2020).

  13. Arsenic exposure of child populations in Northern Argentina. Sci. Total Environ. 669, 1–6 (2019).

    Google Scholar 

  14. Concha, G., Nermell, B. & Vahter, M. V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in Northern Argentina. Environ. Health Perspect. https://doi.org/10.1289/ehp.98106355 (1998).

    Google Scholar 

  15. Navoni, J. A., De Pietri, D., Garcia, S. & Lepori, E. C. V. Riesgo sanitario de La población vulnerable expuesta al arsénico En La provincia de Buenos Aires, Argentina. Revista Panam. De Salud Publica/Pan Am. J. Public. Health. 31, 1–8 (2012).

    Google Scholar 

  16. Red de Seguridad Alimentaria. ARSÉNICO EN AGUA (Consejo Nacional de Investigaciones Científicas y Técnicas, 2018).

  17. ITBA. Mapa de arsénico en Argentina. https://mapa-de-arsenico.web.app/

  18. Nonna, S. Epidemiología del hidroarsenicismo crónico regional endémico en la república argentina. (Asociación Toxicológica Argentina, https://www.argentina.gob.ar/sites/default/files/2006_epidemiologia_del_hacre_en_argentina.pdf (2006).

  19. Rodriguez, G. M. & E., de G. P. Cartografía de radios censales de Argentina corregidos, completados y estandarizados de 1991, 2010 y 2022. (2001).

  20. Instituto Nacional de Estadísitca y Censo (INDEC). Base de datos de Asentamientos humanos de la República Argentina. http://www.bahra.gob.ar/

  21. American Public Health Association. 3500-AS ARSENIC Standard Methods for the Examination of Water and Wastewater, 24th (American Public Health Association, 2023).

  22. Dynamics of arsenic in. Agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ. 379, 180–189 (2007).

    Google Scholar 

  23. George, C. M. et al. Evaluation of an arsenic test kit for rapid well screening in Bangladesh. (2012). https://doi.org/10.1021/es300253p

  24. Bhat, A., Hara, T. O., Tian, F. & Singh, B. Review of analytical techniques for arsenic detection and determination in drinking water. Env Sci. Adv. https://doi.org/10.1039/d2va00218c (2023).

    Google Scholar 

  25. Hui, C. Y., Liu, M. Q. & Guo, Y. Synthetic bacteria designed using Ars operons: a promising solution for Arsenic biosensing and bioremediation. World J. Microbiol. Biotechnol. 40, 192 (2024).

    Google Scholar 

  26. Kaur, H., Kumar, R., Babu, J. N. & Mittal, S. Advances in arsenic biosensor development – a comprehensive review. Biosens. Bioelectron. 63, 533–545 (2015).

    Google Scholar 

  27. He, Y. et al. A critical review of on-site inorganic arsenic screening methods. J. Environ. Sci. 125, 453–469 (2023).

    Google Scholar 

  28. Barone, F. et al. Design and evaluation of an incoherent feed-forward loop for an arsenic biosensor based on standard iGEM parts. Synth Biol 2, 1–10 (2017).

  29. Nadra AD, et al. Design, implementation, re-design, re-implementation… of a biosensor. Soc Iberoamericana Gráfica Digital Blucher Design Proc. (2016) 3, 921–925 (2016).

  30. Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).

    Google Scholar 

  31. Siegfried, K. et al. Introducing simple detection of bioavailable arsenic at Rafaela (Santa Fe Province, Argentina) using the ARSOlux biosensor. Int. J. Environ. Res. Public. Health. 12, 5465–5482 (2015).

    Google Scholar 

  32. Bradski, G. R. & Kaehler, A. Learning OpenCV (O’Reilly Media, 2015).

  33. Zabala, M. E. et al. Hydrological dataset of a sub-humid continental plain basin (Buenos Aires, Argentina). Data Brief. 33, 106400 (2020).

    Google Scholar 

  34. López, M. I., Callao, M. P. & Ruisánchez, I. A tutorial on the validation of qualitative methods: from the univariate to the multivariate approach. Anal. Chim. Acta. 891, 62–72 (2015).

    Google Scholar 

  35. World Health Organization. Arsenic Fact sheet. https://www.who.int/news-room/fact-sheets/detail/arsenic

  36. Ley 18284. Bebidas hídricas, agua y agua gasificada. in Codigo Alimentario Argentino. (2025).

  37. Maity, S., Dokania, P., Goenka, M., Patil, P. B. & Sarkar, A. Health-risk assessment of groundwater arsenic levels in Bhagalpur, India, and development of a cost‐effective paper‐based arsenic testing‐kit. CLEAN–Soil Air Water 53(1), e202300291 (2025).

  38. Sahu, B. et al. A simple and cost-effective paper-based and colorimetric dual-mode detection of arsenic(iii) and lead(ii) based on glucose-functionalized gold nanoparticles. RSC Adv. 11, 20769–20780 (2021).

    Google Scholar 

  39. Inorganic arsenic speciation in. Water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta. 585, 312–322 (2007).

    Google Scholar 

  40. Jayakumar, N. et al. Antimony and arsenic detection: review on electrochemical biosensors and their applications. Water Pract. Technol. 19, 4062–4090 (2024).

    Google Scholar 

  41. Zhang, X. et al. Whole-cell bioreporter technology: a promising approach for environmental risk assessment of as contamination in soil. Front. Microbiol. 15, 1494872 (2024).

    Google Scholar 

  42. Litter, M. I. et al. Arsenic in argentina: Occurrence, human health, legislation and determination. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.04.262 (2019).

    Google Scholar 

  43. Fecher, B., Friesike, S., Hebing, M. & Linek, S. A reputation economy: how individual reward considerations Trump systemic arguments for open access to data. Palgrave Commun. 3, 1–10 (2017).

    Google Scholar 

  44. Pearce, J. M. Building research equipment with Free, Open-Source hardware. Science https://doi.org/10.1126/science.1228183 (2012).

    Google Scholar 

  45. Bezuidenhout, L. M., Leonelli, S., Kelly, A. H. & Rappert, B. Beyond the digital divide: towards a situated approach to open data. Sci. Public. Policy. 44, 464–475 (2017).

    Google Scholar 

  46. Dias, A. et al. PlomBOX: a low cost bioassay for the sensitive detection of lead in drinking water. Commun. Eng. 4, 2 (2025).

    Google Scholar 

  47. Nadra, A. D. Navigating tensions between public and commercial interests: a case study of open source biosensors for detecting water contaminants in Argentina. Front. Med. (Lausanne). 11, 1268950 (2024).

    Google Scholar 

Download references

Acknowledgements

Since the inception of this project at the end of 2012, many individuals and institutions have contributed. We thank B. Basanta, H. Bonomi, N. Carlotto, M. Giménez, A. Grande, N. Nieto Moreno, F. Barone, F. Dorr, L. Marasco, S. Mildiner, I. Patop, S. Sosa, L. Vattino, and F. Vignale for initial steps in designing the biological components. We also acknowledge Romina Mathieu and Luciana Feo Mourelle for early physical prototypes. Special thanks to I. Patop, S. Sosa, and F. Vignale for pushing the project to receive the “Innovative Product” Prize at the Argentinian Innovation Contest Innovar 2014.We are grateful to the Facultad de Ciencias Exactas y Naturales (University of Buenos Aires) and GarageLab for providing the foundational environment. This project was supported by the Ministry of Science and Technology (MINCyT), the Ministry of Education (SPU), ANPCYT (PICT-2015-3834), Universidad de Buenos Aires (PDE 24, 2024), and numerous contributors to our crowdfunding campaign on idea.me. We also thank Dr. J.R. Van der Meer and Dr. Vladimir Sentchilo for providing the ArsR plasmids and A. Rossen, L. Sierra and M.E. Zabala from INA and IHLLA for sharing samples and data of their water campaigns. Finally, we acknowledge Prof. Verónica Liñares for assistance in translating sections of the article.

Funding

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-3834); Universidad de Buenos Aires (PDE 24, 2024).

Author information

Authors and Affiliations

  1. Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional, Universidad de Buenos Aires, Buenos Aires, Argentina

    Javier Gasulla, Ezequiel J. Alba Posse & Alejandro D. Nadra

  2. Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Cátedra Louzau, Buenos Aires, Argentina

    Adrian I. Teijeiro

  3. CONICET, Buenos Aires, Argentina

    Javier Gasulla, Ezequiel J. Alba Posse & Alejandro D. Nadra

Authors

  1. Javier Gasulla
  2. Adrian I. Teijeiro
  3. Ezequiel J. Alba Posse
  4. Alejandro D. Nadra

Contributions

Conceptualization: A.D. Nadra, J. Gasulla. Methodology and Investigation: J. Gasulla, E. Alba Posse, A. Teijeiro. Visualization: A. Teijeiro, J. Gasulla, E. Alba Posse. Supervision, Project Administration and Funding Acquisition: A.D. Nadra. Writing Original Draft: A.D. Nadra. Writing Review & Editing : All authors.

Corresponding author

Correspondence to Alejandro D. Nadra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Open hardware documentation

STL files, CAD designs, Plasmid sequence, and instructions for printing/assembly are available at GitHub SensAr-Biosensor. Physical plasmid can be requested in Addgene 240494.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasulla, J., Teijeiro, A.I., Alba Posse, E.J. et al. Design and implementation of an open-access arsenic biosensor. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-38693-3

Keywords