Design principles of lipid nanoparticles for RNA delivery

design-principles-of-lipid-nanoparticles-for-rna-delivery
Design principles of lipid nanoparticles for RNA delivery

References

  1. Diercks, C. S., Dik, D. A. & Schultz, P. G. Adding new chemistries to the central dogma of molecular biology. Chem 7, 2883–2895 (2021).

    Article  Google Scholar 

  2. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article  Google Scholar 

  3. Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat. Rev. Drug Discov. 23, 838–861 (2024).

    Article  Google Scholar 

  4. Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article  Google Scholar 

  5. Giuliano, C. B., Cvjetan, N., Ayache, J. & Walde, P. Multivesicular vesicles: preparation and applications. ChemSystChem 3, e2000049 (2021).

    Article  Google Scholar 

  6. Vincent, B. McBain and the centenary of the micelle. Adv. Colloid Interf. Sci. 203, 51–54 (2014).

    Article  Google Scholar 

  7. Bangham, A. D. & Horne, R. W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 8, 660–668 (1964).

    Article  Google Scholar 

  8. Bangham, A. D., Standish, M. M. & Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965).

    Article  Google Scholar 

  9. Hope, M. J., Bally, M. B., Webb, G. & Cullis, P. R. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta Biomembr. 812, 55–65 (1985).

    Article  Google Scholar 

  10. Gregoriadis, G., Leathwood, P. D. & Ryman, B. E. Enzyme entrapment in liposomes. FEBS Lett. 14, 95–99 (1971).

    Article  Google Scholar 

  11. Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett. 36, 292–296 (1973).

    Article  Google Scholar 

  12. Gregoriadis, G. & Allison, A. C. Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice. FEBS Lett. 45, 71–74 (1974).

    Article  Google Scholar 

  13. Allison, A. C. & Gregoriadis, G. Liposomes as immunological adjuvants. Nature 252, 252–252 (1974).

    Article  Google Scholar 

  14. Ostro, M. J., Giacomoni, D., Lavelle, D., Paxton, W. & Dray, S. Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature 274, 921–923 (1978).

    Article  Google Scholar 

  15. Dimitriadis, G. J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274, 923–924 (1978).

    Article  Google Scholar 

  16. Malone, R. W., Felgner, P. L. & Verma, I. M. Cationic liposome-mediated RNA transfection. Proc. Natl Acad. Sci. USA 86, 6077–6081 (1989).

    Article  Google Scholar 

  17. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987). This article reports lipofection, establishing that cationic lipids can deliver nucleic acids into mammalian cells.

    Article  Google Scholar 

  18. Gregoriadis, G. Liposomology: delivering the message. J. Liposome Res. 28, 1–4 (2018).

    Article  Google Scholar 

  19. Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).

    Article  Google Scholar 

  20. Barenholz, Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  Google Scholar 

  21. Giordani, S., Marassi, V., Zattoni, A., Roda, B. & Reschiglian, P. Liposomes characterization for market approval as pharmaceutical products: analytical methods, guidelines and standardized protocols. J. Pharm. Biomed. Anal. 236, 115751 (2023).

    Article  Google Scholar 

  22. Taniguchi, H. et al. Liposomal amphotericin B formulation displaying lipid-modified chitin-binding domains with enhanced antifungal activity. Mol. Pharm. 19, 3906–3914 (2022).

    Article  Google Scholar 

  23. Abraham, S. A. et al. The liposomal formulation of doxorubicin. Methods Enzymol. 391, 71–97 (2005).

    Article  Google Scholar 

  24. Filion, M. C. & Phillips, N. C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta Biomembr. 1329, 345–356 (1997).

    Article  Google Scholar 

  25. Tousignant, J. D. et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum. Gene Ther. 11, 2493–2513 (2000).

    Article  Google Scholar 

  26. Wheeler, J. J. et al. Stabilized plasmid–lipid particles: construction and characterization. Gene Ther. 6, 271–281 (1999).

    Article  Google Scholar 

  27. Maurer, N. et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 80, 2310–2326 (2001).

    Article  Google Scholar 

  28. Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta Biomembr. 1510, 152–166 (2001).

    Article  Google Scholar 

  29. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  Google Scholar 

  30. Mullard, A. FDA approves mRNA-based RSV vaccine. Nat. Rev. Drug Discov. 23, 487 (2024).

    Google Scholar 

  31. Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 23, 709–722 (2024).

    Article  Google Scholar 

  32. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Edn 51, 8529–8533 (2012). This article reports a rational design approach to identifying DLin-MC3-DMA, the ionizable lipid that enabled the first siRNA–lipid-nanoparticle therapy to be approved by the FDA.

    Article  Google Scholar 

  33. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  Google Scholar 

  34. Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 14, 570–570 (2018).

    Google Scholar 

  35. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  Google Scholar 

  36. Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    Article  Google Scholar 

  37. Haynes, B. F. A new vaccine to battle covid-19. N. Engl. J. Med. 384, 470–471 (2021).

    Article  Google Scholar 

  38. Mullard, A. Pfizer’s COVID-19 vaccine secures first full FDA approval. Nat. Rev. Drug Discov. 20, 728 (2021).

    Google Scholar 

  39. Gilbert, P. B. et al. A covid-19 milestone attained — a correlate of protection for vaccines. N. Engl. J. Med. 387, 2203–2206 (2022).

    Article  Google Scholar 

  40. Santel, A. et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13, 1222–1234 (2006).

    Article  Google Scholar 

  41. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  Google Scholar 

  42. Zhi, D. et al. The headgroup evolution of cationic lipids for gene delivery. Bioconj. Chem. 24, 487–519 (2013).

    Article  Google Scholar 

  43. Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    Article  Google Scholar 

  44. Hajj, K. A. et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Lett. 20, 5167–5175 (2020).

    Article  Google Scholar 

  45. Whitehead, K. A. et al. Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol. Ther. 19, 1688–1694 (2011).

    Article  Google Scholar 

  46. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article  Google Scholar 

  47. Alabi, C. A. et al. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl Acad. Sci. USA 110, 12881–12886 (2013).

    Article  Google Scholar 

  48. Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article  Google Scholar 

  49. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  Google Scholar 

  50. Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018). This article reports the use of cryo-electron microscopy to reveal that lipid nanoparticles form a nanostructured core–shell architecture, clarifying how lipids organize around RNA.

    Article  Google Scholar 

  51. Evers, M. J. W. et al. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2, 1700375 (2018).

    Article  Google Scholar 

  52. Zhang, C. et al. Antibiotic-derived lipid nanoparticles to treat intracellular Staphylococcus aureus. ACS Appl. Bio Mater. 2, 1270–1277 (2019).

    Article  Google Scholar 

  53. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008). This article reports an accelerated discovery approach for ionizable lipids for RNA delivery using combinatorial chemistry.

    Article  Google Scholar 

  54. Lee, S. M. et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew. Chem. Int. Edn 60, 5848–5853 (2021).

    Article  Google Scholar 

  55. Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    Article  Google Scholar 

  56. Petersen, D. M. S. et al. Branched-tail lipid nanoparticles for intravenous mRNA delivery to lung immune, endothelial, and alveolar cells in mice. Adv. Healthc. Mater. 13, 2400225 (2024).

    Article  Google Scholar 

  57. Yan, Y. et al. Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy. Biomaterials 301, 122279 (2023).

    Article  Google Scholar 

  58. Han, X. et al. In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors. Nat. Commun. 15, 1762 (2024).

    Article  Google Scholar 

  59. Knapp, C. M., Guo, P. & Whitehead, K. A. Lipidoid tail structure strongly influences siRNA delivery activity. Cell Mol. Bioeng. 9, 305–314 (2016).

    Article  Google Scholar 

  60. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  Google Scholar 

  61. Shirazi, R. S. et al. Synthesis and characterization of degradable multivalent cationic lipids with disulfide-bond spacers for gene delivery. Biochim. Biophys. Acta Biomembr. 1808, 2156–2166 (2011).

    Article  Google Scholar 

  62. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  Google Scholar 

  63. Witzigmann, D. et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    Article  Google Scholar 

  64. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Article  Google Scholar 

  65. Yang, S. T., Kreutzberger, A. J. B., Lee, J., Kiessling, V. & Tamm, L. K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids 199, 136–143 (2016).

    Article  Google Scholar 

  66. Zhang, X., Barraza, K. M. & Beauchamp, J. L. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc. Natl Acad. Sci. USA 115, 3255–3260 (2018).

    Article  Google Scholar 

  67. Alberts, B. et al. The lipid bilayer. In Molecular Biology of the Cell 4th edn (Garland Science, 2002).

  68. Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article  Google Scholar 

  69. Briuglia, M. L., Rotella, C., McFarlane, A. & Lamprou, D. A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 5, 231–242 (2015).

    Article  Google Scholar 

  70. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  Google Scholar 

  71. Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

    Article  Google Scholar 

  72. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  Google Scholar 

  73. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  Google Scholar 

  74. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). This article demonstrates that selective organ targeting can alter nanoparticle organ tropism by modulating nanoparticle charge.

    Article  Google Scholar 

  75. Du, Z., Munye, M. M., Tagalakis, A. D., Manunta, M. D. I. I. & Hart, S. L. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep. 4, 4–9 (2014).

    Article  Google Scholar 

  76. Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article  Google Scholar 

  77. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article  Google Scholar 

  78. Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).

    Article  Google Scholar 

  79. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015). This article describes the identification of enduring mRNA–lipid-nanoparticle formulation parameters using factorial design.

    Article  Google Scholar 

  80. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  Google Scholar 

  81. Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Article  Google Scholar 

  82. Eygeris, Y., Patel, S., Jozic, A. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    Article  Google Scholar 

  83. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  Google Scholar 

  84. Álvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells extend survival in a mouse model of lymphoreplete B cell lymphoma. Angew. Chem. Int. Edn 62, e202310395 (2023).

    Article  Google Scholar 

  85. Safra, T. et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 11, 1029–1034 (2000).

    Article  Google Scholar 

  86. Pozzi, D. et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6, 2782–2792 (2014).

    Article  Google Scholar 

  87. Suzuki, T. et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020).

    Article  Google Scholar 

  88. Sanchez, L., Yi, Y. & Yu, Y. Effect of partial PEGylation on particle uptake by macrophages. Nanoscale 9, 288–297 (2017).

    Article  Google Scholar 

  89. Nicholas, A. R., Scott, M. J., Kennedy, N. I. & Jones, M. N. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim. Biophys. Acta Biomembr. 1463, 167–178 (2000).

    Article  Google Scholar 

  90. Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012).

    Article  Google Scholar 

  91. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    Article  Google Scholar 

  92. Nosova, A. S. et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm 10, 369–377 (2019).

    Article  Google Scholar 

  93. Li, M. et al. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Lett. 21, 1591–1598 (2021).

    Article  Google Scholar 

  94. Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconj. Chem. 34, 941–960 (2023).

    Article  Google Scholar 

  95. Zhou, K. et al. Hydrophobic domain structure of linear-dendritic poly(ethylene glycol) lipids affects RNA delivery of lipid nanoparticles. Mol. Pharm. 17, 1575–1585 (2020).

    Article  Google Scholar 

  96. Chen, D., Ganesh, S., Wang, W. & Amiji, M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale 11, 8760–8775 (2019).

    Article  Google Scholar 

  97. Berger, M. et al. Effect of PEG anchor and serum on lipid nanoparticles: development of a nanoparticles tracking method. Pharmaceutics 15, 597 (2023).

    Article  Google Scholar 

  98. Fenton, O. S. et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 28, 2939–2943 (2016).

    Article  Google Scholar 

  99. Melamed, J. R. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023).

    Article  Google Scholar 

  100. Hatakeyama, H. et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32, 4306–4316 (2011).

    Article  Google Scholar 

  101. Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article  Google Scholar 

  102. Dézsi, L. et al. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. Geroscience 44, 597–618 (2022).

    Article  Google Scholar 

  103. Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 8, 1483–1498 (2024).

    Article  Google Scholar 

  104. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article  Google Scholar 

  105. Kang, D. D. et al. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact. Mater. 37, 86–93 (2024).

    Google Scholar 

  106. Luozhong, S. et al. Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity. Nat. Mater. 24, 1852–1861 (2025).

    Article  Google Scholar 

  107. Xiao, Y. et al. High-density brush-shaped polymer lipids reduce anti-PEG antibody binding for repeated administration of mRNA therapeutics. Nat. Mater. 24, 1840–1851 (2025).

    Article  Google Scholar 

  108. Hinnebusch, A. G., Ivanov, I. P. & Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416 (2016).

    Article  Google Scholar 

  109. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  Google Scholar 

  110. Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, REVIEWS0004 (2002).

    Article  Google Scholar 

  111. Karikó, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  Google Scholar 

  112. Melamed, J. R. et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J. Control. Release 341, 206–214 (2022).

    Article  Google Scholar 

  113. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). This article reports that nucleoside-modified RNA suppresses innate immune sensing, laying the foundation for mRNA therapeutics.

    Article  Google Scholar 

  114. Granot, Y. & Peer, D. Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics — an innate immune system standpoint. Semin. Immunol. 34, 68–77 (2017).

    Article  Google Scholar 

  115. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  Google Scholar 

  116. Karikó, K. & Weissman, D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr. Opin. Drug Discov. Devel. 10, 523–532 (2007).

    Google Scholar 

  117. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  Google Scholar 

  118. Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

    Article  Google Scholar 

  119. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019). This article describes lipid H, later known as SM-102, the ionizable lipid in the Moderna COVID-19 mRNA vaccine.

    Article  Google Scholar 

  120. Li, Y., Ye, Z., Yang, H. & Xu, Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm. Sin. B 12, 2624–2639 (2022).

    Article  Google Scholar 

  121. Ball, R. L., Hajj, K. A., Vizelman, J., Bajaj, P. & Whitehead, K. A. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 18, 3814–3822 (2018).

    Article  Google Scholar 

  122. Fletcher, S. et al. In vivo studies of dialkynoyl analogues of DOTAP demonstrate improved gene transfer efficiency of cationic liposomes in mouse lung. J. Med. Chem. 49, 349–357 (2006).

    Article  Google Scholar 

  123. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article  Google Scholar 

  124. Suzuki, Y. et al. Splenic B cell-targeting lipid nanoparticles for safe and effective mRNA vaccine delivery. J. Control. Release 382, 113687 (2025).

    Article  Google Scholar 

  125. Voke, E. et al. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. Nat. Commun. 16, 8699 (2025).

    Article  Google Scholar 

  126. Hardianto, A., Muscifa, Z. S., Widayat, W., Yusuf, M. & Subroto, T. The effect of ethanol on lipid nanoparticle stabilization from a molecular dynamics simulation perspective. Molecules 28, 4836 (2023).

    Article  Google Scholar 

  127. Henderson, M. I., Eygeris, Y., Jozic, A., Herrera, M. & Sahay, G. Leveraging biological buffers for efficient messenger RNA delivery via lipid nanoparticles. Mol. Pharm. 19, 4275–4285 (2022).

    Article  Google Scholar 

  128. Cheng, M. H. Y. et al. Induction of bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv. Mater. 35, 2303370 (2023).

    Article  Google Scholar 

  129. Lehman, S. E. et al. Particle metrology approach to understanding how storage conditions affect long-term liposome stability. Langmuir 39, 12313–12323 (2023).

    Article  Google Scholar 

  130. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  Google Scholar 

  131. Zhang, H. et al. Together is better: mRNA co-encapsulation in lipoplexes is required to obtain ratiometric co-delivery and protein expression on the single cell level. Adv. Sci. 9, 2102072 (2022).

    Article  Google Scholar 

  132. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Edn 56, 1059–1063 (2017).

    Article  Google Scholar 

  133. Han, J. P. et al. In vivo delivery of CRISPR–Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8, 6901 (2022).

    Article  Google Scholar 

  134. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  Google Scholar 

  135. Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N. & Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55, R1–R4 (1989).

    Article  Google Scholar 

  136. Liu, Y. et al. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind. Eng. Chem. Res. 59, 4134–4149 (2020).

    Article  Google Scholar 

  137. Martínez Rivas, C. J. et al. Nanoprecipitation process: from encapsulation to drug delivery. Int. J. Pharm. 532, 66–81 (2017).

    Article  Google Scholar 

  138. Miladi, K. et al. Nanoprecipitation process: from particle preparation to in vivo applications. Polym. Nanopart. Nanomed. 445, 17–53 (2016).

    Article  Google Scholar 

  139. Johnson, B. K. & Prud’homme, R. K. Chemical processing and micromixing in confined impinging jets. AIChE J. 49, 2264–2282 (2003).

    Article  Google Scholar 

  140. Maeki, M. et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS ONE 12, e0187962 (2017).

    Article  Google Scholar 

  141. Nong, J. et al. Multi-stage-mixing to control the supramolecular structure of lipid nanoparticles, thereby creating a core-then-shell arrangement that improves performance by orders of magnitude. Preprint at bioRxiv https://doi.org/10.1101/2024.11.12.623321 (2024).

  142. Strelkova Petersen, D. M., Chaudhary, N., Arral, M. L., Weiss, R. M. & Whitehead, K. A. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Eur. J. Pharm. Biopharm. 192, 126–135 (2023).

    Article  Google Scholar 

  143. Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article  Google Scholar 

  144. Bhattacharjee, S. DLS and zeta potential — what they are and what they are not? J. Control. Release 235, 337–351 (2016).

    Article  Google Scholar 

  145. Malburet, C. et al. Size and charge characterization of lipid nanoparticles for mRNA vaccines. Anal. Chem. 94, 4677–4685 (2022).

    Article  Google Scholar 

  146. Loughney, J. W., Minsker, K., Ha, S. & Rustandi, R. R. Development of an imaged capillary isoelectric focusing method for characterizing the surface charge of mRNA lipid nanoparticle vaccines. Electrophoresis 40, 2602–2609 (2019).

    Article  Google Scholar 

  147. Ryals, R. C. et al. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 15, e0241006 (2020).

    Article  Google Scholar 

  148. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  Google Scholar 

  149. Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control. Release 235, 236–244 (2016).

    Article  Google Scholar 

  150. Lam, K. et al. Optimizing lipid nanoparticles for delivery in primates. Adv. Mater. 35, 2211420 (2023).

    Article  Google Scholar 

  151. Hassett, K. J. et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Control. Release 335, 237–246 (2021).

    Article  Google Scholar 

  152. Zhang, J., Fan, H., Levorse, D. A. & Crocker, L. S. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid–biomembrane interactions. Langmuir 27, 1907–1914 (2011).

    Article  Google Scholar 

  153. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    Article  Google Scholar 

  154. McClure, W. O. & Edelman, G. M. Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry 5, 1908–1919 (1966).

    Article  Google Scholar 

  155. Koh, C. G. et al. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J. Control. Release 141, 62–69 (2010).

    Article  Google Scholar 

  156. Zhigaltsev, I. V. et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28, 3633–3640 (2012).

    Article  Google Scholar 

  157. Sebastiani, F. et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano 15, 6709–6722 (2021).

    Article  Google Scholar 

  158. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  Google Scholar 

  159. Trollmann, M. F. W. & Böckmann, R. A. mRNA lipid nanoparticle phase transition. Biophys. J. 121, 3927–3939 (2022).

    Article  Google Scholar 

  160. Kim, B. et al. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J. Control. Release 353, 241–253 (2023).

    Article  Google Scholar 

  161. Ball, R. L., Bajaj, P. & Whitehead, K. A. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int. J. Nanomed. 12, 305–315 (2016).

    Article  Google Scholar 

  162. Zhao, P. et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater. 5, 358–363 (2020).

    Google Scholar 

  163. Suzuki, Y. et al. Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates. Mol. Ther. Nucleic Acids 30, 226–240 (2022).

    Article  Google Scholar 

  164. Li, M. et al. Lyophilization process optimization and molecular dynamics simulation of mRNA-LNPs for SARS-CoV-2 vaccine. npj Vaccines 8, 153 (2023).

    Article  Google Scholar 

  165. Guo, J. et al. Nucleic acid delivery by lipid nanoparticles for organ targeting. Chin. Chem. Lett. 36, 110849 (2025).

    Article  Google Scholar 

  166. Ma, Y., Li, S., Lin, X. & Chen, Y. A perspective of lipid nanoparticles for RNA delivery. Exploration 4, 20230147 (2024).

    Article  Google Scholar 

  167. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    Article  Google Scholar 

  168. Sanchez, A. J. D. S. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Healthc. Mater. 13, 2304033 (2024).

    Article  Google Scholar 

  169. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  Google Scholar 

  170. Kvietys, P. R. in The Gastrointestinal Circulation Ch. 6 (Morgan & Claypool Life Sciences, 2010).

  171. Kanasty, R. L., Whitehead, K. A., Vegas, A. J. & Anderson, D. G. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol. Ther. 20, 513–524 (2012).

    Article  Google Scholar 

  172. Jacobs, F., Wisse, E. & De Geest, B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am. J. Pathol. 176, 14–21 (2010).

    Article  Google Scholar 

  173. Tanuma, Y., Ohata, M., Ito, T. & Uchida, K. Electron microscopic studies on the sinusoidal cells in the monkey liver. Arch. Histol. Jpn. 46, 401–426 (1983).

    Article  Google Scholar 

  174. Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res. 51, 2305–2313 (2018).

    Article  Google Scholar 

  175. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013). This article reports the quantification of intracellular lipid nanoparticle trafficking, showing that only about 1–2% achieve endosomal escape.

    Article  Google Scholar 

  176. Hunter, M. R. et al. Understanding intracellular biology to improve mRNA delivery by lipid nanoparticles. Small Methods 7, 2201695 (2023).

    Article  Google Scholar 

  177. Mo, Y. et al. Lipid–siRNA organization modulates the intracellular dynamics of lipid nanoparticles. J. Am. Chem. Soc. 147, 10430–10445 (2025).

    Article  Google Scholar 

  178. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  Google Scholar 

  179. Iwakawa, K. et al. Cubic phase-inducible zwitterionic phospholipids improve the functional delivery of mRNA. Adv. Sci. 12, 2413016 (2025).

    Article  Google Scholar 

  180. Mochizuki, S. et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim. Biophys. Acta Biomembr. 1828, 412–418 (2013).

    Article  Google Scholar 

  181. Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl Acad. Sci. USA 120, e2301067120 (2023).

    Article  Google Scholar 

  182. Gindy, M. E. et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 30, 4613–4622 (2014).

    Article  Google Scholar 

  183. Tesei, G. et al. Lipid shape and packing are key for optimal design of pH-sensitive mRNA lipid nanoparticles. Proc. Natl Acad. Sci. USA 121, e2311700120 (2024).

    Article  Google Scholar 

  184. Herrera, M. et al. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    Article  Google Scholar 

  185. Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015). This article is one of the first to report mRNA delivery by lipid nanoparticles.

    Article  Google Scholar 

  186. Wang, C. et al. Blood–brain-barrier-crossing lipid nanoparticles for mRNA delivery to the central nervous system. Nat. Mater. 24, 1653–1663 (2025).

    Article  Google Scholar 

  187. Kuzminich, Y. et al. Lipid nanoparticles deliver mRNA to the blood–brain barrier. Nano Res. 17, 9126–9134 (2024).

    Article  Google Scholar 

  188. Tiwade, P. B., Ma, Y., VanKeulen-Miller, R. & Fenton, O. S. A lung-expressing mRNA delivery platform with tunable activity in hypoxic environments. J. Am. Chem. Soc. 146, 17365–17376 (2024).

    Article  Google Scholar 

  189. Tiwade, P. B. et al. Customizable polymeric nanoparticle materials optimized on hypoxic cells facilitate mRNA expression in the lungs in vivo. Adv. Healthc. Mater. 14, 2500245 (2025).

    Article  Google Scholar 

  190. Omo-Lamai, S. et al. Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions. Adv. Mater. 36, 2312026 (2024).

    Article  Google Scholar 

  191. Turnbull, I. C. et al. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol. Ther. 24, 66–75 (2016).

    Article  Google Scholar 

  192. Isaac, I. et al. Reengineering endogenous targeting lipid nanoparticles (ENDO) for systemic delivery of mRNA to pancreas. Adv. Mater. 37, 2507657 (2025).

    Article  Google Scholar 

  193. Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article  Google Scholar 

  194. Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    Article  Google Scholar 

  195. Kim, H. et al. Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys. Nat. Biotechnol. 43, 1813–1820 (2025).

    Article  Google Scholar 

  196. Chaudhary, N. et al. Lipid nanoparticle structure and delivery route during pregnancy dictate mRNA potency, immunogenicity, and maternal and fetal outcomes. Proc. Natl Acad. Sci. USA 121, e2307810121 (2024).

    Article  Google Scholar 

  197. Swingle, K. L. et al. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature 638, 412–421 (2025).

    Article  Google Scholar 

  198. Hofbauer, S. I. et al. Cytokine mRNA delivery and local immunomodulation in the placenta using lipid nanoparticles. Adv. Ther. 8, e00148 (2025).

    Article  Google Scholar 

  199. Lee, E. et al. Elasticity-driven nanomechanical interaction to improve the targeting ability of lipid nanoparticles in the malignant tumor microenvironment. Adv. Sci. 12, 2502073 (2025).

    Article  Google Scholar 

  200. Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, 1028–1041 (2021).

    Article  Google Scholar 

  201. Palanki, R. et al. In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells. Proc. Natl Acad. Sci. USA 121, e2400783121 (2024).

    Article  Google Scholar 

  202. Liu, C., Jiang, X., Gan, Y. & Yu, M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: design, evaluation and state-of-the-art. Med. Drug Discov. 12, 100110 (2021).

    Article  Google Scholar 

  203. Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).

    Article  Google Scholar 

  204. Benet, L. Z. & Zia-Amirhosseini, P. Basic principles of pharmacokinetics. Toxicol. Pathol. 23, 115–123 (1995).

    Article  Google Scholar 

  205. Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague–Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    Article  Google Scholar 

  206. August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against chikungunya virus. Nat. Med. 27, 2224–2233 (2021).

    Article  Google Scholar 

  207. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  Google Scholar 

  208. Ndeupen, S. et al. The mRNA–LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    Article  Google Scholar 

  209. Gao, S. et al. Improving adenine base editing precision by enlarging the recognition domain of CRISPR–Cas9. Nat. Commun. 16, 2081 (2025).

    Article  Google Scholar 

  210. Khirallah, J. et al. In vivo base editing of Angptl3 via lipid nanoparticles to treat cardiovascular disease. Mol. Ther. Nucleic Acids 36, 102486 (2025).

    Article  Google Scholar 

  211. Perez-Garcia, C. G. et al. Development of an mRNA replacement therapy for phenylketonuria. Mol. Ther. Nucleic Acids 28, 87–98 (2022).

    Article  Google Scholar 

  212. Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Article  Google Scholar 

  213. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  Google Scholar 

  214. Young, T. L. et al. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug Deliv. Rev. 197, 114826 (2023).

    Article  Google Scholar 

  215. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  Google Scholar 

  216. Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  Google Scholar 

  217. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  Google Scholar 

  218. Cohn, D. M. et al. CRISPR-based therapy for hereditary angioedema. N. Engl. J. Med. 392, 458–467 (2025).

    Article  Google Scholar 

  219. Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc. Natl Acad. Sci. USA 116, 21150–21159 (2019).

    Article  Google Scholar 

  220. Rake, J. et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease type I (ESGSD I). Eur. J. Pediat. 161, S20–S34 (2002).

    Article  Google Scholar 

  221. Head, P. S. E., Meier, J. L. & Venditti, C. P. New insights into the pathophysiology of methylmalonic acidemia. J. Inherit. Metab. Dis. 46, 436–449 (2023).

    Article  Google Scholar 

  222. Perrie, Y. et al. The impact of ageing on the barriers to drug delivery. J. Control. Release 161, 389–398 (2012).

    Article  Google Scholar 

  223. Poley, M. et al. Sex-based differences in the biodistribution of nanoparticles and their effect on hormonal, immune, and metabolic function. Adv. Nanobiomed. Res. 2, 2200089 (2022).

    Article  Google Scholar 

  224. Bae, S. H. et al. Rational design of lipid nanoparticles for enhanced mRNA vaccine delivery via machine learning. Small 21, 2405618 (2025).

    Article  Google Scholar 

  225. Wang, W. et al. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat. Commun. 15, 10804 (2024).

    Article  Google Scholar 

  226. Müller, R. H., Mäder, K. & Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161–177 (2000).

    Article  Google Scholar 

  227. Szoka, F. & Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980).

    Article  Google Scholar 

  228. Eldem, T., Speiser, P. & Hincal, A. Optimization of spray-dried and -congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm. Res. 8, 47–54 (1991).

    Article  Google Scholar 

  229. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  Google Scholar 

  230. Grimm, D. & Kay, M. A. Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Ther. 13, 563–575 (2006).

    Article  Google Scholar 

  231. Diener, C., Keller, A. & Meese, E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 38, 613–626 (2022).

    Article  Google Scholar 

  232. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28, 285–296 (2018).

    Article  Google Scholar 

  233. Mahata, B., Mukherjee, S., Mishra, S., Bandyopadhyay, A. & Adhya, S. Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 314, 471–474 (2006).

    Article  Google Scholar 

  234. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article  Google Scholar 

  235. Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    Article  Google Scholar 

  236. Torres-Vázquez, B. et al. In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J. Mol. Biol. 434, 167501 (2022).

    Article  Google Scholar 

Download references