Designing and testing CRISPRi-based synthetic gene circuits in plants

designing-and-testing-crispri-based-synthetic-gene-circuits-in-plants
Designing and testing CRISPRi-based synthetic gene circuits in plants
  • Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hancock, J. F. A framework for assessing the risk of transgenic Crops. Bioscience 53, 512–519 (2003).

    Article  Google Scholar 

  • He, R. et al. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front. Plant Sci. 9, 970 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, M. A. et al. CRISPRi-based circuits to control gene expression in plants. Nat. Biotechnol. 43, 416–430 (2024).

    Article  PubMed  Google Scholar 

  • Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, J. P. B. et al. Synthetic memory circuits for stable cell reprogramming in plants. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01383-2 (2022).

  • Khan, A. & Lister, R. Synthetic gene circuits in plants: recent advances and challenges. Quant. Plant Biol. 6, e6 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd, J. P. B., Khan, A. & Lister, R. The switch-liker’s guide to plant synthetic gene circuits. Plant J. 121, e70090 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods 11, 723–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M. & Klavins, E. Digital logic circuits in yeast with CRISPR–dCas9 NOR gates. Nat. Commun. 8, 15459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Vilar, M., Selma, S. & Orzaez, D. The design of synthetic gene circuits in plants: new components, old challenges. J. Exp. Bot. 74, 3791–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. & Demirer, G. S. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol. 41, 1182–1198 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Gaber, R. et al. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat. Chem. Biol. 10, 203–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic CRISPRi-based synthetic circuits. Nat. Commun. 11, 2746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar, S. et al. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. Plant Methods 18, 42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiziou, S., Maranas, C. J., Chu, J. C. & Nemhauser, J. L. An integrase toolbox to record gene-expression during plant development. Nat. Commun. 14, 1844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaumberg, K. A. et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods 13, 94 (2015).

    Article  PubMed  Google Scholar 

  • Ming, M. et al. CRISPR–Cas12b enables efficient plant genome engineering. Nat. Plants 6, 202–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa, Y. et al. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. Rice 7, 11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigoulot, S. B. et al. Automated, high-throughput protoplast transfection for gene editing and transgene expression studies. Methods Mol. Biol. 2653, 129–149 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Giménez, E., Selma, S., Calvache, C. & Orzáez, D. GB_SynP: a modular dCas9-regulated synthetic promoter collection for fine-tuned recombinant gene expression in plants. ACS Synth. Biol. 11, 3037–3048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvache, C., Vazquez-Vilar, M., Moreno-Giménez, E. & Orzaez, D. A quantitative autonomous bioluminescence reporter system with a wide dynamic range for plant synthetic biology. Plant Biotechnol. J. 22, 37–47 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Rademacher, T. et al. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnol. J. 17, 1560–1566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jusiak, B. et al. Synthetic gene circuits. In Encyclopedia of Molecular Cell Biology and Molecular Medicine Vol. 4 (ed. Meyers, R. A.) 1–56 (Wiley–VCH, 2014).

  • Jusiak, B., Cleto, S., Perez-Piñera, P. & Lu, T. K. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol. 34, 535–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Shahmuradov, I. A., Umarov, R. K. & Solovyev, V. V. TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic Acids Res. 45, e65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, H.-Y. et al. IProEP: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids 17, 337–346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umarov, R., Kuwahara, H., Li, Y., Gao, X. & Solovyev, V. Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics 35, 2730–2737 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Engler, C. et al. A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 3, 839–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Cove, D. J. et al. The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb. Protoc. 2009, db.emo115 (2009).

    Article  Google Scholar 

  • Khan, M. A. et al. CRISPRi-based circuits to control gene expression in plants. Zenodo https://doi.org/10.5281/zenodo.11108565 (2024).

  • Swain, T. et al. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res. 52, 474–491 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Bloj, B. et al. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR–dCas9 system. Oncotarget 7, 60535–60554 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shechner, D. M., Hacisuleyman, E., Younger, S. T. & Rinn, J. L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H. & Ohme-Takagi, M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959–1968 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsu, K., Matsui, K., Koyama, T. & Ohme-Takagi, M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. et al. CRISPR-P 2.0: an improved CRISPR–Cas9 tool for genome editing in plants. Mol. Plant 10, 530–532 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xie, X. et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10, 1246–1249 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Bae, S. & Kim, J.-S. Cas-Designer: a web-based tool for choice of CRISPR–Cas9 target sites. Bioinformatics 31, 4014–4016 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS  PubMed  Google Scholar 

  • Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

    CAS  PubMed  Google Scholar 

  • Chow, C.-N. et al. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 47, D1155–D1163 (2019).

    Article  PubMed  Google Scholar 

  • Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar