Development and optimization of Moxifloxacin solid lipid nanoparticles via double emulsion organic solvent free technique applying Box–Behnken experimental design

development-and-optimization-of-moxifloxacin-solid-lipid-nanoparticles-via-double-emulsion-organic-solvent-free-technique-applying-box–behnken-experimental-design
Development and optimization of Moxifloxacin solid lipid nanoparticles via double emulsion organic solvent free technique applying Box–Behnken experimental design

References

  1. Barnum, L., Samandari, M., Schmidt, T. A. & Tamayol, A. Microneedle arrays for the treatment of chronic wounds. Expert Opin. Drug Deliv. 17, 1767–1780 (2020).

    Google Scholar 

  2. Arroyave, F., Montaño, D. & Lizcano, F. Diabetes mellitus is a chronic disease that can benefit from therapy with induced pluripotent stem cells. Int. J. Mol. Sci. 21, 8685 (2020).

  3. Martino, G., Caputo, A., Bellone, F., Quattropani, M. C. & Vicario, C. M. Going beyond the visible in type 2 diabetes mellitus: defense mechanisms and their associations with depression and health-related quality of life. Front. Psychol. 11, 519034 (2020).

    Google Scholar 

  4. Lipsky, B. A. et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 36, e3280 (2020).

    Google Scholar 

  5. Robertson, S. M. et al. Ocular pharmacokinetics of moxifloxacin after topical treatment of animals and humans. Surv. Ophthalmol. 50, S32–S45 (2005).

    Google Scholar 

  6. Arafa, M. G., Mousa, H. A., Kataia, M. M. & Shehabeldin, M. Afifi, N. N. Functionalized surface of PLGA nanoparticles in thermosensitive gel to enhance the efficacy of antibiotics against antibiotic resistant infections in endodontics: A randomized clinical trial. Int. J. Pharm. X 6, 100219 (2023).

  7. Arafa, M. G. & Ayoub, B. M. Bioavailability study of niosomal salbutamol sulfate in metered dose inhaler: controlled pulmonary drug delivery. J. Aerosol Med. Pulm Drug Deliv. 31, 1–2 (2018).

    Google Scholar 

  8. Ezhilarasu, H., Vishalli, D., Dheen, S. T., Bay, B. H. & Kumar Srinivasan, D. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials 10, 1–29 (2020).

  9. Mihai, M. M., Dima, M. B., Dima, B. & Holban, A. M. Nanomaterials for wound healing and infection control. Material 12(12), 2176 (2019).

    Google Scholar 

  10. Rajendran, N. K., Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv Sci. Technol. 44, 421–430 (2018).

    Google Scholar 

  11. Zhou, J. et al. Remineralization and bacterial Inhibition of early enamel caries surfaces by carboxymethyl Chitosan lysozyme nanogels loaded with antibacterial drugs. J. Dent. 152, 105489 (2025).

    Google Scholar 

  12. Ye, Y. et al. Multifunctional DNA hydrogels with light-triggered gas-therapy and controlled G-Exos release for infected wound healing. Bioact Mater. 52, 422–437 (2025).

    Google Scholar 

  13. Abosabaa, S. A., Arafa, M. G. & ElMeshad, A. N. Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J. Drug Deliv Sci. Technol. 60, 102084 (2020).

  14. Shazly, G. A. Ciprofloxacin controlled-solid lipid nanoparticles: characterization in vitro release, and antibacterial activity assessment. Biomed Res. Int. 2017, 2120734 (2017).

  15. Pignatello, R. et al. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomater 2018. 8, 304 (2018).

    Google Scholar 

  16. Taheri, M. et al. Antibiotics-encapsulated nanoparticles as an antimicrobial agent in the treatment of wound infection. Front. Immunol. 15, 1435151 (2024).

    Google Scholar 

  17. Heydari, B. et al. Efficacy of topical moxifloxacin on therapeutic laparoscopy-induced wound healing: A double-blind, randomized clinical trial. BMC Surg. 25, 1–9 (2025).

    Google Scholar 

  18. Mohammed, H. A. et al. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol. Rev. 12 (2023).

  19. Abosabaa, S. A., Elmeshad, A. N. & Arafa, M. G. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: A comprehensive analysis using box–behnken design. Polym. (Basel). 13, 1–18 (2021).

    Google Scholar 

  20. Ding, S., Serra, C. A., Vandamme, T. F., Yu, W. & Anton, N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control Release. 295, 31–49 (2019).

    Google Scholar 

  21. Abdel Hady, M., Sayed, O. M. & Akl, M. A. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; optimization and in-vivo evaluation. Colloids Surf. B Biointerfaces. 193, 111076 (2020).

    Google Scholar 

  22. Becker Peres, L., Peres, B., de Araújo, L., Sayer, C. & P. H. H. & Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces. 140, 317–323 (2016).

    Google Scholar 

  23. Hao, J. et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomed. 6, 683–692 (2011).

    Google Scholar 

  24. Wang, J. et al. Solid lipid nanoparticles as an effective sodium aescinate delivery system: Formulation and anti-inflammatory activity. RSC Adv. 12, 6583–6591 (2022).

    Google Scholar 

  25. Kalam, M. A. et al. Part I: development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J. Biomed. Mater. Res. A. 101, 1813–1827 (2013).

    Google Scholar 

  26. Nabi-Meibodi, M. et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids Surf. B Biointerfaces. 112, 408–414 (2013).

    Google Scholar 

  27. Ghaffari, S., Varshosaz, J., Saadat, A. & Atyabi, F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int. J. Nanomed. 6, 35–43 (2011).

    Google Scholar 

  28. Shi, L., Li, Z., Yu, L., Jia, H. & Zheng, L. Effects of surfactants and lipids on the preparation of solid lipid nanoparticles using double emulsion method. J. Dispers Sci. Technol. 32, 254–259 (2011).

    Google Scholar 

  29. Khairnar, S. V. et al. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharm. 2022. 14, 1886 (2022).

    Google Scholar 

  30. Nandanwar, M. et al. Assessment of wound healing efficacy of growth factor concentrate (GFC) in non-diabetic and diabetic Sprague Dawley rats. J. Diabetes Metab. Disord. 20, 1583–1595 (2021).

    Google Scholar 

  31. Hosseini, S. M. et al. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: A pharmacodynamics study on J774A.1 cell line. Antimicrob. Resist. Infect. Control. 8, 1–12 (2019).

    Google Scholar 

  32. Li, Z., Yu, L., Zheng, L. & Geng, F. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method. J. Therm. Anal. Calorim. 99, 689–693 (2010).

    Google Scholar 

  33. Nandini, P. T., Doijad, R. C., Shivakumar, H. N. & Dandagi, P. M. Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv. 22, 647–651 (2015).

    Google Scholar 

  34. Farooq, M. et al. Fabrication and evaluation of voriconazole loaded transethosomal gel for enhanced antifungal and antileishmanial activity. Molecules 27, 3347 (2022).

    Google Scholar 

  35. Rojanaratha, T. et al. Preparation, physicochemical characterization, ex vivo, and in vivo evaluations of Asiatic acid-loaded solid lipid nanoparticles formulated with natural waxes for nose-to-brain delivery. Eur. J. Pharm. Sci. 203, 106935 (2024).

    Google Scholar 

  36. Bhalekar, M., Upadhaya, P. & Madgulkar, A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug Darunavir. Appl. Nanosci. 7, 47–57 (2017).

    Google Scholar 

  37. Borges, A., de Freitas, V., Mateus, N., Fernandes, I. & Oliveira, J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxid. 2020. 9, 998 (2020).

    Google Scholar 

  38. Formulation Design, S. S. M., S. R. Optimization, and evaluation of solid lipid nanoparticles loaded with an antiviral drug tenofovir using Box–Behnken design for boosting oral bioavailability. Adv. Pharmacol. Pharm. Sci. 5248746 (2024). (2024).

  39. Ibrahim, W. M., AlOmrani, A. H. & Yassin, A. E. B. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability. Int. J. Nanomed. 9, 129–144 (2013).

    Google Scholar 

  40. Dong, Z. et al. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug Deliv. 18, 441–450 (2011).

    Google Scholar 

  41. Radwan, I. T. et al. Effect of nanostructure lipid carrier of methylene blue and monoterpenes as enzymes inhibitor for culex pipiens. Sci. Rep. 13, 1–15 (2023).

    Google Scholar 

  42. Bharti Sharma, J. et al. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using box Behnken design in the management of streptozotocin-induced diabetes mellitus. Saudi Pharm. J. 31, 101727 (2023).

    Google Scholar 

  43. Peng, X. et al. Box–Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  44. Samee, A. et al. Sulconazole-Loaded solid lipid nanoparticles for enhanced antifungal activity: In vitro and in vivo approach. Molecules 28, 7508 (2023).

    Google Scholar 

  45. Giri, T. K. et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm. J. 21, 125–141 (2013).

    Google Scholar 

  46. Sawant, A., Kamath, S., Kg, H. & Kulyadi, G. P. Solid-in-Oil-in-Water emulsion: An innovative paradigm to improve drug stability and biological activity. AAPS PharmSciTech. 22, 199 (2021).

    Google Scholar 

  47. Motwani, S. K., Chopra, S., Ahmad, F. J. & Khar, R. K. Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Spectrochim Acta Part. Mol. Biomol. Spectrosc. 68, 250–256 (2007).

    Google Scholar 

  48. Akanda, M., Mithu, M. S. H. & Douroumis, D. Solid lipid nanoparticles: an effective lipid-based technology for cancer treatment. J. Drug Deliv Sci. Technol. 86, 104709 (2023).

    Google Scholar 

  49. Abosabaa, S. A., Arafa, M. G. & ElMeshad, A. N. Hybrid chitosan-lipid nanoparticles of green tea extract as natural anti-cellulite agent with superior in vivo potency: Full synthesis and analysis. Drug Deliv. 28, 2160–2176 (2021).

    Google Scholar 

  50. Sohail, S. et al. Melatonin delivered in solid lipid nanoparticles ameliorated its neuroprotective effects in cerebral ischemia. Heliyon 9, e19779 (2023).

    Google Scholar 

  51. Martínez-Acevedo, L. et al. Effect of magnesium stearate solid lipid nanoparticles as a lubricant on the properties of tablets by direct compression. Eur. J. Pharm. Biopharm. 193, 262–273 (2023).

    Google Scholar 

  52. Elgendy, K. H., Zaky, M., altorky, A. E., mohamed, M. & Fadel, S. Determination of levofloxacin, norfloxacin, and moxifloxacin in pharmaceutical dosage form or individually using derivative UV spectrophotometry. BMC Chem. 18, 1–21 (2024).

    Google Scholar 

  53. Pornputtapitak, W., Thiangjit, Y. & Tantirungrotechai, Y. Effect of functional groups in lipid molecules on the stability of nanostructured lipid carriers: Experimental and computational investigations. ACS Omega 9, 11012–11024 (2024).

    Google Scholar 

  54. Pereira-Leite, C., Bom, M., Ribeiro, A., Almeida, C. & Rosado, C. Exploring stearic-acid-based nanoparticles for skin applications—focusing on stability and cosmetic benefits. Cosmetics 10, 99 (2023).

    Google Scholar 

  55. Peters, E. J. G. et al. Interventions in the management of infection in the foot in diabetes: A systematic review. Diabetes Metab. Res. Rev. 36, e3282 (2020).

    Google Scholar 

  56. Kelidari, H. R. et al. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces 128, 473–479 (2015).

    Google Scholar 

  57. Tsichlis, I. et al. Development of liposomal and liquid crystalline lipidic nanoparticles with non-ionic surfactants for quercetin incorporation. Materials (Basel) 16, 5509 (2023).

    Google Scholar 

  58. Boskabadi, M. et al. Topical gel of vitamin A solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Adv. Pharm. Bull. 11, 663 (2020).

    Google Scholar 

  59. Izmuliana, A., Putri, E. & Ariyanto, H. D. Effect of Hydrophilic- lipophilic balance (HLB) value on the stability of cosmetic lotion based on walnut oil (Canarium indicium L.) oil-in-water emulsion. J. Vocat. Stud. Appl. Res. 4, 53–60 (2022).

    Google Scholar 

  60. Singpanna, K., Charnvanich, D. & Panapisal, V. Effect of the hydrophilic-lipophilic balance values of non-ionic surfactants on size and size distribution and stability of oil/water soybean oilnanoemulsions. Thai J. Pharm. Sci. 45, 487–491 (2021).

    Google Scholar 

  61. Jiang, J. et al. Model emulsions stabilized with nonionic surfactants: Structure and rheology across catastrophic phase inversion. ACS Omega 7, 44012 (2022).

    Google Scholar 

  62. Wang, Q., Zhang, H., Han, Y., Cui, Y. & Han, X. Study on the relationships between the oil HLB value and emulsion stabilization. RSC Adv. 13, 24692–24698 (2023).

    Google Scholar 

  63. Mohamed, J. M. M. et al. Optimization and characterization of quercetin-loaded solid lipid nanoparticles for biomedical application in colorectal cancer. Cancer Nanotechnol. 15, 1–17 (2024).

    Google Scholar 

  64. Singh, S., Dobhal, A. K., Jain, A., Pandit, J. K. & Chakraborty, S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem. Pharm. Bull. 58, 650–655 (2010).

    Google Scholar 

  65. Subroto, E., Andoyo, R., Indiarto, R., Wulandari, E. & Wadhiah, E. F. N. Preparation of solid lipid nanoparticle-ferrous sulfate by double emulsion method based on fat rich in monolaurin and stearic acid. Nanomater. 12, 3054 (2022).

  66. Silpa, R., Chakravarthi, N., Chandramouli, Y. & Hemanth Pavan kumar, K. Moxifloxacin loaded solid lipid nanoparticles (SLNs): Preparation and characterization. Asian J. Pharm. Res. 2, 105–112 (2012).

  67. Darsh, G., Himanshu, C. & Ranjit, S. Lomefloxacin loaded solid lipid nanoparticles gel for topical ocular therapy: Optimization, evaluation and ex vivo studies. Res. J. Chem. Environ. 26, 14–22 (2022).

    Google Scholar 

  68. Bhatt, S. et al. Design and optimization of febuxostat-loaded nano lipid carriers using full factorial design. Turkish J. Pharm. Sci. 18, 61 (2021).

    Google Scholar 

  69. Shah, M., Agrawal, Y. K., Garala, K. & Ramkishan, A. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J. Pharm. Sci. 74, 434 (2012).

    Google Scholar 

  70. Arana, L., Gallego, L. & Alkorta, I. Incorporation of antibiotics into solid lipid nanoparticles: A promising approach to reduce antibiotic resistance emergence. Nanomaterials 111251 (2021).

    Google Scholar 

  71. Yao, S. et al. Size-dependence of the skin penetration of andrographolide nanosuspensions: In vitro release-ex vivo permeation correlation and visualization of the delivery pathway. Int. J. Pharm. 641, 123065 (2023).

    Google Scholar 

  72. Xiang, H. et al. Skin permeation of Curcumin nanocrystals: Effect of particle size, delivery vehicles, and permeation enhancer. Colloids Surf. B Biointerfaces 224, 113203 (2023).

    Google Scholar 

  73. Sainaga Jyothi, V. G. S. et al. Lipid nanoparticles in topical dermal drug delivery: does chemistry of lipid persuade skin penetration? J. Drug Deliv Sci. Technol. 69, 103176 (2022).

    Google Scholar 

  74. Shahraeini, S. S. et al. Atorvastatin solid lipid nanoparticles as a promising approach for dermal delivery and an anti-inflammatory agent. AAPS PharmSciTech 21, 1–10 (2020).

    Google Scholar 

  75. Ekambaram, P. & Abdul Hasan Sathali, A. Formulation and evaluation of solid lipid nanoparticles of Ramipril. J. Young Pharm. 3, 216–220 (2011).

  76. Rostamkalaei, S. S., Akbari, J., Saeedi, M., Morteza-Semnani, K. & Nokhodchi, A. Topical gel of metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Colloids Surf. B Biointerfaces. 175, 150–157 (2019).

    Google Scholar 

  77. Shah, R., Eldridge, D. S., Palombo, E. & Harding, I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential (2014).

  78. Khan, H., Nazir, S., Farooq, R. K., Khan, I. N. & Javed, A. Fabrication and assessment of diosgenin encapsulated stearic acid solid lipid nanoparticles for its anticancer and antidepressant effects using in vitro and in vivo models. Front. Neurosci. 15, 806713 (2022).

    Google Scholar 

  79. Zafeiri, I., Norton, J. E., Smith, P., Norton, I. T. & Spyropoulos, F. The role of surface active species in the fabrication and functionality of edible solid lipid particles. J. Colloid Interface Sci. 500, 228–240 (2017).

    Google Scholar 

  80. Sznitowska, M., Wolska, E., Baranska, H., Cal, K. & Pietkiewicz, J. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN). Eur. J. Pharm. Biopharm. 110, 24–30 (2017).

    Google Scholar 

  81. Ismat Muzamil, M. M., Helal Uddin, A. B. M., Sarker, Z. I., Janakiraman, A. K. & Bin, L. K. Effect of concentration of lipid and temperature on the formation of naringenin loaded solid lipid nanoparticles. Eur. Chem. Bull. 11, 21–28 (2022).

    Google Scholar 

  82. Lüdtke, F. L., Silva, T. J., da Silva, M. G., Hashimoto, J. C. & Ribeiro, A. P. B. Lipid nanoparticles: Formulation, production methods and characterization protocols. Foods 2025. 14, 973 (2025).

    Google Scholar 

  83. Farooq, M. et al. Voriconazole cyclodextrin based polymeric nanobeads for enhanced solubility and activity: In Vitro/In vivo and molecular simulation approach. Pharmaceutics 15, 389 (2023).

    Google Scholar 

  84. Badawi, N. M. et al. Pomegranate extract-loaded solid lipid nanoparticles: Design, optimization, and in vitro cytotoxicity study. Int. J. Nanomed. 13, 1313–1326 (2018).

    Google Scholar 

  85. Shah, R. M. et al. Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. Colloids Surf. B Biointerfaces. 140, 204–212 (2016).

    Google Scholar 

  86. Shah, R. M., Eldridge, D. S., Palombo, E. A. & Harding, I. H. Stability mechanisms for microwave-produced solid lipid nanoparticles. Colloids Surf. Physicochem Eng. Asp. 643, 128774 (2022).

    Google Scholar 

  87. Ramadan, S. E., El-Gizawy, S. A., Osman, M. A. & Arafa, M. F. Application of design of experiment in the optimization of apixaban-loaded solid lipid nanoparticles: In vitro and in vivo evaluation. AAPS PharmSciTech. 24, 1–13 (2023).

    Google Scholar 

  88. Apostolou, M., Assi, S., Fatokun, A. A. & Khan, I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 110, 2859–2872 (2021).

    Google Scholar 

  89. Asasutjarit, R. et al. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm. Res. 24, 1098–1107 (2007).

    Google Scholar 

  90. Cassayre, M. et al. Optimization of solid lipid nanoparticle formulation for cosmetic application using design of experiments, PART II: Physical characterization and in vitro skin permeation for Sesamol skin delivery. Cosmet. 2024. 11, Page 120 (11), 120 (2024).

    Google Scholar 

  91. Behbahani, E. S., Ghaedi, M., Abbaspour, M. & Rostamizadeh, K. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason. Sonochem. 38, 271–280 (2017).

    Google Scholar 

  92. Khan, M. F. A. et al. Hydrogel containing solid lipid nanoparticles loaded with argan oil and simvastatin: Preparation, in vitro and ex vivo assessment. Gels 2022. 8, 277 (2022).

    Google Scholar 

  93. Unnisa, A. et al. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: statistical design, optimization, in-vitro and in-vivo characterization, and evaluation. Pharmaceuticals 15, 568 (2022).

    Google Scholar 

  94. Atapour-Mashhad, H., Tayarani-Najaran, Z. & Golmohammadzadeh, S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 10, e31429 (2024).

    Google Scholar 

  95. Gorle, A. P., Mahale, H. V. & Patil, C. S. Effective management of odontogenic infections through controlled fashion by polymeric device containing Moxyfloxacin. Int. J. Curr. Pharm. Res. 100–106. https://doi.org/10.22159/ijcpr.2017v9i5.22149 (2017).

Download references