DFT-guided photostable chitosan-derived carbon quantum dots as colloidal antibacterial and bioimaging agents

dft-guided-photostable-chitosan-derived-carbon-quantum-dots-as-colloidal-antibacterial-and-bioimaging-agents
DFT-guided photostable chitosan-derived carbon quantum dots as colloidal antibacterial and bioimaging agents

References

  1. Adawy, A., Elbassyouni, G. T., Ibrahim, M. & Abd El-Fattah, W. I. Bio nano material: The third alternative. In Nanotechnology: Diagnostics and Therapeutics. (Studium Press, 2013).

    Google Scholar 

  2. Lin, X. & Chen, T. A review of in vivo toxicity of quantum Dots in animal models. Int. J. Nanomed. 18, 8143–8168 (2023).

    Google Scholar 

  3. Das, P. et al. Carbon quantum Dots as emerging biosensors for food safety and environmental applications: advances and challenges. Appl. Food Res. 5 (2), 101255 (2025).

    Google Scholar 

  4. Subramaniam, P. et al. Generation of a library of non-toxic quantum Dots for cellular imaging and SiRNA delivery. Adv. Mater. 24 (29), 4014–4019 (2012).

    Google Scholar 

  5. Wang, X. & Wu, T. An update on the biological effects of quantum dots: from environmental fate to risk assessment based on multiple biological models. Sci. Total Environ. 879, 163166 (2023).

    Google Scholar 

  6. Ranjha, M. et al. Biocompatible nanomaterials in food Science, Technology, and nutrient drug delivery: recent developments and applications. Front. Nutr. 8, 778155 (2021).

    Google Scholar 

  7. Devi, P., Saini, S. & Kim, K. H. The advanced role of carbon quantum Dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019).

    Google Scholar 

  8. Yanat, M. & Schroën, K. Preparation methods and applications of Chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive Funct. Polym. 161, 104849 (2021).

    Google Scholar 

  9. Yu, J. et al. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydr. Polym. 261, 117904 (2021).

    Google Scholar 

  10. Shukla, S., Mishra, A., Arotiba, O. & Mamba, B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 59, 46–58 (2013).

    Google Scholar 

  11. Ferreira, L. & Zucolotto, V. Chitosan-based nanomedicines: A review of the main challenges for translating the science of polyelectrolyte complexation into innovative pharmaceutical products. Carbohydr. Polym. Technol. Appl. 7, 100441 (2024).

    Google Scholar 

  12. El-Naggar, N., Shiha, A., Mahrous, H. & Mohammed, A. Green synthesis of Chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multidrug-resistant biofilm-forming acinetobacter baumannii. Sci. Rep. 12 (1), Article19869 (2022).

    Google Scholar 

  13. Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114 (2), 165–172 (2006).

    Google Scholar 

  14. Nasrollahzadeh, M. et al. Green Nanotechnology. In An Introduction to Green Nanotechnology. 145–198 (Elsevier, 2019).

    Google Scholar 

  15. Khan, A. & Alamry, K. A. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr. Res. 506, 108368 (2021).

    Google Scholar 

  16. Wang, H., Qian, J. & Ding, F. Emerging Chitosan-Based films for food packaging applications. J. Agric. Food Chem. 66 (2), 395–413 (2018).

    Google Scholar 

  17. Shirolkar, M. M. et al. Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles. Nano-Struct. Nano-Objects. 25, 100657 (2021).

    Google Scholar 

  18. Athavale, R. et al. Tuning the surface charge properties of chitosan nanoparticles. Mater. Lett. 308, 131114 (2022).

    Google Scholar 

  19. Xiao, D. et al. Advances and challenges of fluorescent nanomaterials for synthesis and biomedical applications. Nanoscale Res. Lett. 16 (1), 1–23 (2021).

    Google Scholar 

  20. Haram, S. K. et al. Quantum confinement in CdTe quantum dots: investigation through Cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C. 115 (14), 6243–6249 (2011).

    Google Scholar 

  21. Jadhav, Y. A., Thakur, P. R. & Haram, S. K. Voltammetry investigation on copper zinc Tin sulphide/selenide (CZTSxSe1-x) alloy nanocrystals: Estimation of composition dependent band edge parameters. Sol. Energy Mater. Sol. Cells. 155, 273–279 (2016).

    Google Scholar 

  22. Rondiya, S. R. et al. Experimental and theoretical study into interface structure and band alignment of the Cu2Zn1-x cd x SnS4 heterointerface for photovoltaic applications. ACS Appl. Energy Mater. 3 (6), 5153–5162 (2020).

    Google Scholar 

  23. Guo, Y. & Zhao, W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum Dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 240, 118580 (2020).

    Google Scholar 

  24. Janus, Ł. et al. Chitosan-based carbon quantum Dots for biomedical applications: synthesis and characterization. Nanomaterials 9 (2), 274 (2019).

    Google Scholar 

  25. Ghosh, T. et al. Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013قô2022). Carbon Lett. 32 (4), 953–977 (2022).

    Google Scholar 

  26. Lv, S. et al. Preparation and application of chitosan-based fluorescent probes. Analyst 147 (21), 4657–4673 (2022).

    Google Scholar 

  27. Maheshwari, S., Singh, A. & Verma, A. Polysaccharide-based carbon quantum dots: synthesis and theranostic applications—a review. Biomedical Mater. Devices 1–24 (2025).

  28. Li, C. et al. Chemical and functional inheritance of carbon quantum Dots hydrothermally-derived from Chitosan. J. Colloid Interface Sci. 682, 680–689 (2025).

    Google Scholar 

  29. Wu, Y. et al. Carbon quantum Dots derived from different carbon sources for antibacterial applications. Antibiotics 10 (6), 623 (2021).

    Google Scholar 

  30. Yao, M. et al. Chitosan-derived carbon quantum dots with dual ROS scavenging and anti-inflammatory functionalities for accelerated wound repair. ACS Appl. Mater. Interfaces. 17, 40157 (2025).

    Google Scholar 

  31. Das, P. et al. Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces. 15 (24), 29425–29439 (2023).

    Google Scholar 

  32. Maruthapandi, M. et al. Microbial Inhibition and biosensing with multifunctional carbon dots: progress and perspectives. Biotechnol. Adv. 53, 107843 (2021).

    Google Scholar 

  33. Yang, Y. et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of Chitosan. Chem. Commun. 48 (3), 380–382 (2012).

    Google Scholar 

  34. Shirolkar, M. M. et al. Observation of nanotwinning and room temperature ferromagnetism in sub-5 Nm BiFeO₃ nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 18, 25409–25420 (2016).

    Google Scholar 

  35. Mollick, M. M. et al. Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework. Energy Environ. Sci. 15, 3462–3469 (2022).

    Google Scholar 

  36. Mandal, A. et al. Post engineering of a chemically stable MOF for selective and sensitive sensing of nitric oxide. Mol. Syst. Des. Eng. 8, 756–766 (2023).

    Google Scholar 

  37. Flory, P. J. Principles of Polymer Chemistry (Cornell University Press, 1953).

    Google Scholar 

  38. Clark, S. J. et al. First principles methods using CASTEP. Z. für kristallographie-crystalline Mater. 220 (5–6), 567–570 (2005).

    Google Scholar 

  39. Williams_Analyst_1983_PLQY formula.pdf

  40. Wu, T. et al. Integration of lysozyme into Chitosan nanoparticles for improving antibacterial activity. Carbohydr. Polym. 155, 192–200 (2017).

    Google Scholar 

  41. Yan, Z. et al. Preparation of carbon quantum Dots based on starch and their spectral properties. Luminescence 30 (4), 388–392 (2015).

    Google Scholar 

  42. Sahu, S. et al. Simple one-step synthesis of highly luminescent carbon Dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. (Camb). 48 (70), 8835–8837 (2012).

    Google Scholar 

  43. Rong, M. C. et al. The synthesis of B, N-carbon Dots by a combustion method and the application of fluorescence detection for Cu 2+. Chin. Chem. Lett. 28 (5), 1119–1124 (2017).

    Google Scholar 

  44. Ding, H. et al. Facile synthesis of red-emitting carbon Dots from pulp-free lemon juice for bioimaging. J. Mater. Chem. B. 5 (26), 5272–5277 (2017).

    Google Scholar 

  45. Li, F. et al. Highly fluorescent chiral N-S-Doped carbon Dots from cysteine: affecting cellular energy metabolism. Angew Chem. Int. Ed. Engl. 57 (9), 2377–2382 (2018).

    Google Scholar 

  46. Gao, P. et al. Fluorine-Doped carbon Dots with intrinsic Nucleus-Targeting ability for drug and dye delivery. Bioconjug. Chem. 31 (3), 646–655 (2020).

    Google Scholar 

  47. Li, H. et al. Water-soluble fluorescent carbon quantum Dots and photocatalyst design. Angew Chem. Int. Ed. Engl. 49 (26), 4430–4434 (2010).

    Google Scholar 

  48. Molaei, M. J. Carbon quantum Dots and their biomedical and therapeutic applications: a review. RSC Adv. 9 (12), 6460–6481 (2019).

    Google Scholar 

  49. Ge, G. et al. Carbon dots: synthesis, properties and biomedical applications. J. Mater. Chem. B. 9 (33), 6553–6575 (2021).

    Google Scholar 

  50. Pierrat, P. et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51, 290–302 (2015).

    Google Scholar 

  51. Liu, X. et al. Simple approach to synthesize amino-functionalized carbon Dots by carbonization of Chitosan. Sci. Rep. 6 (1), 1–8 (2016).

    Google Scholar 

  52. Pawar, S. et al. Functionalized chitosan–carbon dots: a fluorescent probe for detecting trace amount of water in organic solvents. ACS Omega. 4 (6), 11301–11311 (2019).

    Google Scholar 

  53. Zhan, J. et al. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum Dots from Chitosan. ACS Omega. 4 (27), 22574–22580 (2019).

    Google Scholar 

  54. Yan, X. et al. Carbon quantum dot-incorporated Chitosan hydrogel for selective sensing of Hg2 + ions: Synthesis, characterization, and density functional theory calculation. ACS Omega. 6 (36), 23504–23514 (2021).

    Google Scholar 

  55. Das, S. et al. Chitosan, carbon quantum Dot, and silica nanoparticle mediated DsRNA delivery for gene Silencing in Aedes aegypti: A comparative analysis. ACS Appl. Mater. Interfaces. 7 (35), 19530–19535 (2015).

    Google Scholar 

  56. Zavareh, H. S. et al. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system toward the release of 5-fluorouracil. Int. J. Biol. Macromol. 165(Pt A), 1422–1430 (2020).

    Google Scholar 

  57. Lustriane, C. et al. Effect of Chitosan and Chitosan-nanoparticles on post harvest quality of banana fruits. J. Plant. Biotechnol. 45 (1), 36–44 (2018).

    Google Scholar 

  58. Zhang, X. et al. Highly fluorescent nitrogen-doped carbon Dots with large Stokes shifts. J. Mater. Chem. C. 11 (34), 11476–11485 (2023).

    Google Scholar 

  59. Shaikh, A. F. et al. Bioinspired carbon quantum dots: an antibiofilm agents. J. Nanosci. Nanotechnol. 19 (4), 2339–2345 (2019).

    Google Scholar 

  60. Chowdhury, D., Gogoi, N. & Majumdar, G. Fluorescent carbon dots obtained from chitosan gel. RSC Adv. 2 (32), 12156 (2012).

    Google Scholar 

  61. Hu, Y. et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon Dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014).

    Google Scholar 

  62. Würth, C. et al. Relative and absolute determination of fluorescence quantum yields transparent samples. Nat. Protoc. 8 (8), 1535–1550 (2013).

    Google Scholar 

  63. Sun, Y. et al. Monodisperse MFe₂O₄ (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 128 (24), 7756–7757 (2006).

    Google Scholar 

  64. Dong, R. et al. A coronene-based semiconducting two-dimensional metal–organic framework with ferromagnetic behavior. Angew Chem. 125, 7954–7958 (2013).

    Google Scholar 

  65. Jadhav, Y., Thakur, P. & Haram, S. Voltammetry investigation on copper zinc Tin sulphide/selenide (CZTSₓSe₁₋ₓ) alloy nanocrystals: Estimation of composition-dependent band edge parameters. Sol. Energy Mater. Sol. Cells. 155, 273–279 (2016).

    Google Scholar 

  66. Lohar, A. et al. Narrow and intense photoluminescence emission: manifestation of Cu vacancies in CuGaS₂/ZnS quantum Dots. J. Phys. Chem. C. 129 (23), 10539–10549 (2025).

    Google Scholar 

  67. Jadhav, Y. et al. Novel Au/Cu₂NiSnS₄ nanoheterostructure: Synthesis, structure, heterojunction band offset and alignment, and interfacial charge transfer dynamics. ACS Appl. Mater. Interfaces. 16 (17), 21746–21756 (2024).

    Google Scholar 

  68. Haque, M. et al. Zn alloying strategy to improve the photoluminescence of CuGaS₂/ZnS core/shell quantum Dots. J. Mater. Chem. A. 12 (18), 10726–10736 (2024).

    Google Scholar 

  69. Zhou, Y. et al. How functional groups influence the ROS generation and cytotoxicity of graphene quantum Dots. Chem. Commun. (Camb). 53 (76), 10588–10591 (2017).

    Google Scholar 

  70. Jiang, Y. et al. Chitosan nanoparticles induced the antitumor effect in hepatocellular carcinoma cells by regulating ROS-mediated mitochondrial damage and Endoplasmic reticulum stress. Artif. Cells Nanomed. Biotechnol. 47 (1), 747–756 (2019).

    Google Scholar 

  71. Xing, K. et al. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr. Polym. 76 (1), 17–22 (2009).

    Google Scholar 

  72. Chandrasekaran, M., Kim, K. D. & Chun, S. C. Antibacterial activity of chitosan nanoparticles: a review. Processes 8 (9), 1173 (2020).

    Google Scholar 

  73. Divya, K. et al. Antimicrobial properties of Chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym. 18 (2), 221–230 (2017).

    Google Scholar 

  74. Das, S., Mondal, S. & Ghosh, D. Carbon quantum Dots in bioimaging and biomedicines. Front. Bioeng. Biotechnol. 11, 1333752 (2024).

    Google Scholar 

  75. Anpalagan, K. et al. A green synthesis route to derive carbon quantum dots for bioimaging cancer cells. Nanomaterials 13 (14), 2103 (2023).

    Google Scholar 

  76. Manjubaashini, N., Bargavi, P. & Balakumar, S. Carbon quantum Dots derived from agro waste biomass for pioneering bioanalysis and in vivo bioimaging. J. Photochem. Photobiol., A. 454, 115702 (2024).

    Google Scholar 

Download references