References
-
Adawy, A., Elbassyouni, G. T., Ibrahim, M. & Abd El-Fattah, W. I. Bio nano material: The third alternative. In Nanotechnology: Diagnostics and Therapeutics. (Studium Press, 2013).
-
Lin, X. & Chen, T. A review of in vivo toxicity of quantum Dots in animal models. Int. J. Nanomed. 18, 8143–8168 (2023).
-
Das, P. et al. Carbon quantum Dots as emerging biosensors for food safety and environmental applications: advances and challenges. Appl. Food Res. 5 (2), 101255 (2025).
-
Subramaniam, P. et al. Generation of a library of non-toxic quantum Dots for cellular imaging and SiRNA delivery. Adv. Mater. 24 (29), 4014–4019 (2012).
-
Wang, X. & Wu, T. An update on the biological effects of quantum dots: from environmental fate to risk assessment based on multiple biological models. Sci. Total Environ. 879, 163166 (2023).
-
Ranjha, M. et al. Biocompatible nanomaterials in food Science, Technology, and nutrient drug delivery: recent developments and applications. Front. Nutr. 8, 778155 (2021).
-
Devi, P., Saini, S. & Kim, K. H. The advanced role of carbon quantum Dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019).
-
Yanat, M. & Schroën, K. Preparation methods and applications of Chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive Funct. Polym. 161, 104849 (2021).
-
Yu, J. et al. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydr. Polym. 261, 117904 (2021).
-
Shukla, S., Mishra, A., Arotiba, O. & Mamba, B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 59, 46–58 (2013).
-
Ferreira, L. & Zucolotto, V. Chitosan-based nanomedicines: A review of the main challenges for translating the science of polyelectrolyte complexation into innovative pharmaceutical products. Carbohydr. Polym. Technol. Appl. 7, 100441 (2024).
-
El-Naggar, N., Shiha, A., Mahrous, H. & Mohammed, A. Green synthesis of Chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multidrug-resistant biofilm-forming acinetobacter baumannii. Sci. Rep. 12 (1), Article19869 (2022).
-
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114 (2), 165–172 (2006).
-
Nasrollahzadeh, M. et al. Green Nanotechnology. In An Introduction to Green Nanotechnology. 145–198 (Elsevier, 2019).
-
Khan, A. & Alamry, K. A. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr. Res. 506, 108368 (2021).
-
Wang, H., Qian, J. & Ding, F. Emerging Chitosan-Based films for food packaging applications. J. Agric. Food Chem. 66 (2), 395–413 (2018).
-
Shirolkar, M. M. et al. Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles. Nano-Struct. Nano-Objects. 25, 100657 (2021).
-
Athavale, R. et al. Tuning the surface charge properties of chitosan nanoparticles. Mater. Lett. 308, 131114 (2022).
-
Xiao, D. et al. Advances and challenges of fluorescent nanomaterials for synthesis and biomedical applications. Nanoscale Res. Lett. 16 (1), 1–23 (2021).
-
Haram, S. K. et al. Quantum confinement in CdTe quantum dots: investigation through Cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C. 115 (14), 6243–6249 (2011).
-
Jadhav, Y. A., Thakur, P. R. & Haram, S. K. Voltammetry investigation on copper zinc Tin sulphide/selenide (CZTSxSe1-x) alloy nanocrystals: Estimation of composition dependent band edge parameters. Sol. Energy Mater. Sol. Cells. 155, 273–279 (2016).
-
Rondiya, S. R. et al. Experimental and theoretical study into interface structure and band alignment of the Cu2Zn1-x cd x SnS4 heterointerface for photovoltaic applications. ACS Appl. Energy Mater. 3 (6), 5153–5162 (2020).
-
Guo, Y. & Zhao, W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum Dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 240, 118580 (2020).
-
Janus, Ł. et al. Chitosan-based carbon quantum Dots for biomedical applications: synthesis and characterization. Nanomaterials 9 (2), 274 (2019).
-
Ghosh, T. et al. Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013قô2022). Carbon Lett. 32 (4), 953–977 (2022).
-
Lv, S. et al. Preparation and application of chitosan-based fluorescent probes. Analyst 147 (21), 4657–4673 (2022).
-
Maheshwari, S., Singh, A. & Verma, A. Polysaccharide-based carbon quantum dots: synthesis and theranostic applications—a review. Biomedical Mater. Devices 1–24 (2025).
-
Li, C. et al. Chemical and functional inheritance of carbon quantum Dots hydrothermally-derived from Chitosan. J. Colloid Interface Sci. 682, 680–689 (2025).
-
Wu, Y. et al. Carbon quantum Dots derived from different carbon sources for antibacterial applications. Antibiotics 10 (6), 623 (2021).
-
Yao, M. et al. Chitosan-derived carbon quantum dots with dual ROS scavenging and anti-inflammatory functionalities for accelerated wound repair. ACS Appl. Mater. Interfaces. 17, 40157 (2025).
-
Das, P. et al. Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces. 15 (24), 29425–29439 (2023).
-
Maruthapandi, M. et al. Microbial Inhibition and biosensing with multifunctional carbon dots: progress and perspectives. Biotechnol. Adv. 53, 107843 (2021).
-
Yang, Y. et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of Chitosan. Chem. Commun. 48 (3), 380–382 (2012).
-
Shirolkar, M. M. et al. Observation of nanotwinning and room temperature ferromagnetism in sub-5 Nm BiFeO₃ nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 18, 25409–25420 (2016).
-
Mollick, M. M. et al. Benchmark uranium extraction from seawater using an ionic macroporous metal–organic framework. Energy Environ. Sci. 15, 3462–3469 (2022).
-
Mandal, A. et al. Post engineering of a chemically stable MOF for selective and sensitive sensing of nitric oxide. Mol. Syst. Des. Eng. 8, 756–766 (2023).
-
Flory, P. J. Principles of Polymer Chemistry (Cornell University Press, 1953).
-
Clark, S. J. et al. First principles methods using CASTEP. Z. für kristallographie-crystalline Mater. 220 (5–6), 567–570 (2005).
-
Williams_Analyst_1983_PLQY formula.pdf
-
Wu, T. et al. Integration of lysozyme into Chitosan nanoparticles for improving antibacterial activity. Carbohydr. Polym. 155, 192–200 (2017).
-
Yan, Z. et al. Preparation of carbon quantum Dots based on starch and their spectral properties. Luminescence 30 (4), 388–392 (2015).
-
Sahu, S. et al. Simple one-step synthesis of highly luminescent carbon Dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. (Camb). 48 (70), 8835–8837 (2012).
-
Rong, M. C. et al. The synthesis of B, N-carbon Dots by a combustion method and the application of fluorescence detection for Cu 2+. Chin. Chem. Lett. 28 (5), 1119–1124 (2017).
-
Ding, H. et al. Facile synthesis of red-emitting carbon Dots from pulp-free lemon juice for bioimaging. J. Mater. Chem. B. 5 (26), 5272–5277 (2017).
-
Li, F. et al. Highly fluorescent chiral N-S-Doped carbon Dots from cysteine: affecting cellular energy metabolism. Angew Chem. Int. Ed. Engl. 57 (9), 2377–2382 (2018).
-
Gao, P. et al. Fluorine-Doped carbon Dots with intrinsic Nucleus-Targeting ability for drug and dye delivery. Bioconjug. Chem. 31 (3), 646–655 (2020).
-
Li, H. et al. Water-soluble fluorescent carbon quantum Dots and photocatalyst design. Angew Chem. Int. Ed. Engl. 49 (26), 4430–4434 (2010).
-
Molaei, M. J. Carbon quantum Dots and their biomedical and therapeutic applications: a review. RSC Adv. 9 (12), 6460–6481 (2019).
-
Ge, G. et al. Carbon dots: synthesis, properties and biomedical applications. J. Mater. Chem. B. 9 (33), 6553–6575 (2021).
-
Pierrat, P. et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51, 290–302 (2015).
-
Liu, X. et al. Simple approach to synthesize amino-functionalized carbon Dots by carbonization of Chitosan. Sci. Rep. 6 (1), 1–8 (2016).
-
Pawar, S. et al. Functionalized chitosan–carbon dots: a fluorescent probe for detecting trace amount of water in organic solvents. ACS Omega. 4 (6), 11301–11311 (2019).
-
Zhan, J. et al. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum Dots from Chitosan. ACS Omega. 4 (27), 22574–22580 (2019).
-
Yan, X. et al. Carbon quantum dot-incorporated Chitosan hydrogel for selective sensing of Hg2 + ions: Synthesis, characterization, and density functional theory calculation. ACS Omega. 6 (36), 23504–23514 (2021).
-
Das, S. et al. Chitosan, carbon quantum Dot, and silica nanoparticle mediated DsRNA delivery for gene Silencing in Aedes aegypti: A comparative analysis. ACS Appl. Mater. Interfaces. 7 (35), 19530–19535 (2015).
-
Zavareh, H. S. et al. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system toward the release of 5-fluorouracil. Int. J. Biol. Macromol. 165(Pt A), 1422–1430 (2020).
-
Lustriane, C. et al. Effect of Chitosan and Chitosan-nanoparticles on post harvest quality of banana fruits. J. Plant. Biotechnol. 45 (1), 36–44 (2018).
-
Zhang, X. et al. Highly fluorescent nitrogen-doped carbon Dots with large Stokes shifts. J. Mater. Chem. C. 11 (34), 11476–11485 (2023).
-
Shaikh, A. F. et al. Bioinspired carbon quantum dots: an antibiofilm agents. J. Nanosci. Nanotechnol. 19 (4), 2339–2345 (2019).
-
Chowdhury, D., Gogoi, N. & Majumdar, G. Fluorescent carbon dots obtained from chitosan gel. RSC Adv. 2 (32), 12156 (2012).
-
Hu, Y. et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon Dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014).
-
Würth, C. et al. Relative and absolute determination of fluorescence quantum yields transparent samples. Nat. Protoc. 8 (8), 1535–1550 (2013).
-
Sun, Y. et al. Monodisperse MFe₂O₄ (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 128 (24), 7756–7757 (2006).
-
Dong, R. et al. A coronene-based semiconducting two-dimensional metal–organic framework with ferromagnetic behavior. Angew Chem. 125, 7954–7958 (2013).
-
Jadhav, Y., Thakur, P. & Haram, S. Voltammetry investigation on copper zinc Tin sulphide/selenide (CZTSₓSe₁₋ₓ) alloy nanocrystals: Estimation of composition-dependent band edge parameters. Sol. Energy Mater. Sol. Cells. 155, 273–279 (2016).
-
Lohar, A. et al. Narrow and intense photoluminescence emission: manifestation of Cu vacancies in CuGaS₂/ZnS quantum Dots. J. Phys. Chem. C. 129 (23), 10539–10549 (2025).
-
Jadhav, Y. et al. Novel Au/Cu₂NiSnS₄ nanoheterostructure: Synthesis, structure, heterojunction band offset and alignment, and interfacial charge transfer dynamics. ACS Appl. Mater. Interfaces. 16 (17), 21746–21756 (2024).
-
Haque, M. et al. Zn alloying strategy to improve the photoluminescence of CuGaS₂/ZnS core/shell quantum Dots. J. Mater. Chem. A. 12 (18), 10726–10736 (2024).
-
Zhou, Y. et al. How functional groups influence the ROS generation and cytotoxicity of graphene quantum Dots. Chem. Commun. (Camb). 53 (76), 10588–10591 (2017).
-
Jiang, Y. et al. Chitosan nanoparticles induced the antitumor effect in hepatocellular carcinoma cells by regulating ROS-mediated mitochondrial damage and Endoplasmic reticulum stress. Artif. Cells Nanomed. Biotechnol. 47 (1), 747–756 (2019).
-
Xing, K. et al. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr. Polym. 76 (1), 17–22 (2009).
-
Chandrasekaran, M., Kim, K. D. & Chun, S. C. Antibacterial activity of chitosan nanoparticles: a review. Processes 8 (9), 1173 (2020).
-
Divya, K. et al. Antimicrobial properties of Chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym. 18 (2), 221–230 (2017).
-
Das, S., Mondal, S. & Ghosh, D. Carbon quantum Dots in bioimaging and biomedicines. Front. Bioeng. Biotechnol. 11, 1333752 (2024).
-
Anpalagan, K. et al. A green synthesis route to derive carbon quantum dots for bioimaging cancer cells. Nanomaterials 13 (14), 2103 (2023).
-
Manjubaashini, N., Bargavi, P. & Balakumar, S. Carbon quantum Dots derived from agro waste biomass for pioneering bioanalysis and in vivo bioimaging. J. Photochem. Photobiol., A. 454, 115702 (2024).
