Direct delivery of assay reagents to extracellular vesicles in liquid biopsies for biomarker analysis

direct-delivery-of-assay-reagents-to-extracellular-vesicles-in-liquid-biopsies-for-biomarker-analysis
Direct delivery of assay reagents to extracellular vesicles in liquid biopsies for biomarker analysis
  • Kumar, M. A. et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 9, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Berumen Sánchez, G., Bunn, K. E., Pua, H. H. & Rafat, M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun. Signal. 19, 104 (2021).

  • Qin, Y. & Gao, W.-Q. Concise review: patient-derived stem cell research for monogenic disorders. Stem Cells 34, 44–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier, P. G. J. et al. The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27, 809–821 (2015).

  • Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, R., Greening, D. W., Zhu, H.-J., Takahashi, N. & Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162 (2016).

  • Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

  • Infantes-Lorenzo, J. A. et al. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. Clin. Proteom. 14, 36 (2017).

    Article  Google Scholar 

  • van Goethem, N. P., van Hagen, B. T. J. & Prickaerts, J. Assessing spatial pattern separation in rodents using the object pattern separation task. Nat. Protoc. 13, 1763–1792 (2018).

    Article  PubMed  Google Scholar 

  • Li, M. et al. An optimized procedure for exosome isolation and analysis using serum samples: application to cancer biomarker discovery. Methods 87, 26–30 (2015).

    Article  PubMed  Google Scholar 

  • Endzeliņš, E. et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17, 730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D. et al. Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat. Commun. 10, 3854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1, 0021 (2017).

  • Ning, B. et al. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat. Nanotechnol. 16, 1039–1044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, G., Kim, D.-K. & Jeong, H. Spontaneous emergence of rudimentary music detectors in deep neural networks. Nat. Commun. 15, 148 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K.-Y. et al. Creating hierarchical pores in metal–organic frameworks via postsynthetic reactions. Nat. Protoc. 18, 604–625 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Jin, H. et al. Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation. Nat. Commun. 14, 5417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon, L., Lapinte, V. & Morille, M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J. Extracell. Vesicles 12, 12386 (2023).

  • She, R. et al. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 186, 2977–2994.e23 (2023).

  • Gao, X. et al. Rapid detection of exosomal microRNAs using virus-mimicking fusogenic vesicles. Angew. Chem. Int. Ed. 58, 8719–8723 (2019).

    Article  CAS  Google Scholar 

  • Sato, Y. T. et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 6, 21933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumeaux, C. et al. MicroRNA detection by DNA-mediated liposome fusion. ChemBioChem 19, 434–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malle, M. G. et al. Programmable RNA loading of extracellular vesicles with toehold-release purification. J. Am. Chem. Soc. 146, 12410–12422 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F. & Tareste, D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 12, 6830–6842 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Zhang, W., Baba, T., Chung, U.-i. & Teramura, Y. Extracellular vesicle-liposome hybrids via membrane fusion using cell-penetrating peptide-conjugated lipids. Regen. Ther. 26, 533–540 (2024).

  • Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sawant, R. R. & Torchilin, V. P. Challenges in development of targeted liposomal therapeutics. AAPS J. 14, 303–315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escudé Martinez de Castilla, P. et al. Extracellular vesicles as a drug delivery system: a systematic review of preclinical studies. Adv. Drug Deliv. Rev. 175, 113801 (2021).

    Article  PubMed  Google Scholar 

  • Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. Int. Ed. 54, 12029–12033 (2015).

  • Li, L., Hu, S. & Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171, 207–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

  • Lin, Y. et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).

  • Suwatthanarak, T. et al. Microfluidic-based capture and release of cancer-derived exosomes via peptide–nanowire hybrid interface. Lab Chip 21, 597–607 (2021).

  • Zhang, W. et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front. Immunol. 9, 90 (2018).

  • Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).

  • Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

  • Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333.e9 (2021).

  • Ning, B. et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci. Adv. 7, eabe3703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massenburg, D. & Lentz, B. R. Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles. Biochemistry 32, 9172–9180 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Forssen, E. & Willis, M. Ligand-targeted liposomes. Adv. Drug Deliv. Rev. 29, 249–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Park, C. et al. All-in-one fusogenic nanoreactor for the rapid detection of exosomal microRNAs for breast cancer diagnosis. ACS Nano 18, 26297–26314 (2024).

    CAS  Google Scholar 

  • Niu, Q. et al. A fluid multivalent magnetic interface for high-performance isolation and proteomic profiling of tumor-derived extracellular vesicles. Angew. Chem. Int. Ed. 62, e202215337 (2023).

  • Xu, X. et al. Concurrent detection of protein and miRNA at the single extracellular vesicle level using a digital dual CRISPR–Cas assay. ACS Nano 19, 1271–1285 (2024).

    Article  PubMed  Google Scholar 

  • Yan, H. et al. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat. Biomed. Eng. 7, 1583–1601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, J. et al. Encoded fusion-mediated microRNA signature profiling of tumor-derived extracellular vesicles for pancreatic cancer diagnosis. Anal. Chem. 95, 7743–7752 (2023).

  • Lei, Y. et al. Simultaneous subset tracing and miRNA profiling of tumor-derived exosomes via dual-surface-protein orthogonal barcoding. Sci. Adv. 9, eadi1556 (2023).

  • Zhou, D. et al. Sucrose-powered liposome nanosensors for urinary glucometer‐based monitoring of cancer. Angew. Chem. 136, e202404493 (2024).

    Article  Google Scholar 

  • Zhang, Z. et al. Machine learning-aided identification of fecal extracellular vesicle microRNA signatures for noninvasive detection of colorectal cancer. ACS Nano https://doi.org/10.1021/acsnano.4c16698 (2025).

  • Yang, J. et al. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent. Sci. 2, 621–630 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharehchelou, B. et al. Mesenchymal stem cell-derived exosome and liposome hybrids as transfection nanocarriers of Cas9-GFP plasmid to HEK293T cells. PLoS ONE 20, e0315168 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. I. et al. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp. Mol. Med. 56, 836–849 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnopo, Y. M. D. et al. Induced fusion and aggregation of bacterial outer membrane vesicles: experimental and theoretical analysis. J. Colloid Interface Sci. 578, 522–532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, X. et al. Scalable liposomes functionalization via membrane lipid exchange mechanisms. Nano Today 61, 102630 (2025).

    Article  CAS  Google Scholar 

  • Chen, Y. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 18, 212–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mui, B., Chow, L. & Hope, M. J. in Methods in Enzymology Vol. 367 (ed. Duzgunes, N.) 3–14 (Academic Press, 2003).

  • Huang, Z. et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosens. Bioelectron. 164, 112316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillis, L. et al. Factors influencing recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes 30, 74–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Lehrich, B. M., Zheng, S. & Lu, M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J. Extracell. Vesicles 10, e12090 (2021).

  • Sheikh, A., Alhakamy, N. A., Md, S. & Kesharwani, P. Recent progress of RGD modified liposomes as multistage rocket against cancer. Front. Pharmacol. 12, 803304 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Qi, N. et al. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J. Nanobiotechnol. 19, 446 (2021).

  • Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

  • Li, Y. et al. Thermophoretic glycan profiling of extracellular vesicles for triple-negative breast cancer management. Nat. Commun. 15, 2292 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertes, F. et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genom. 10, 374–386 (2011).

    Article  CAS  Google Scholar 

  • Singh, R. R. Target enrichment approaches for next-generation sequencing applications in oncology. Diagnostics 12, 1539 (2022).