Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285. https://doi.org/10.1016/j.oneear.2021.08.016 (2021).
Fabricius, K. E. et al. The seven sins of climate change: A review of rates of change, and quantitative impacts on ecosystems and water quality in the Great Barrier Reef. Mar. Pollut. Bull. 219, 118267. https://doi.org/10.1016/j.marpolbul.2025.118267 (2025).
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).
Souter, D. et al. Status of coral reefs of the world: 2020 report. Global Coral Reef Monitoring Network (GCRMN) and International Coral Reef Initiative (ICRI); https://doi.org/10.59387/WOTJ9184 (2021).
Okamoto, M., Nojima, S., Fujiwara, S. & Furushima, Y. Development of ceramic settlement devices for coral reef restoration using in situ sexual reproduction of corals. Fish. Sci. 74, 1245–1253. https://doi.org/10.1111/j.1444-2906.2008.01649.x (2008).
Todinanahary, G. G. B. et al. Community-based coral aquaculture in Madagascar: A profitable economic system for a simple rearing technique?. Aquaculture 467, 225–234. https://doi.org/10.1016/j.aquaculture.2016.07.012 (2017).
Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: The use of sexual and asexual recruits. Restor. Ecol. 3, 241–251. https://doi.org/10.1111/j.1526-100X.1995.tb00091.x (1995).
Boström-Einarsson, L. et al. Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631. https://doi.org/10.1371/journal.pone.0226631 (2020).
Banaszak, A. T. et al. Applying coral breeding to reef restoration: Best practices, knowledge gaps, and priority actions in a rapidly-evolving field. Restor. Ecol. 31, e13913. https://doi.org/10.1111/rec.13913 (2023).
Petersen, D. et al. The application of sexual coral recruits for the sustainable management of ex situ populations in public aquariums to promote coral reef conservation—SECORE Project. Aquat. Conserv. 16, 167–179. https://doi.org/10.1002/aqc.716 (2006).
Pollock, F. J. et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5, e3732. https://doi.org/10.7717/peerj.3732 (2017).
Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232. https://doi.org/10.3354/meps13206 (2020).
Harrison, P., & Wallace, C. In Reproduction, dispersal and recruitment of scleractinian corals. Ecosystems of the World, Vol. 25 (ed Dubinsky, Z.) 133–196. (Coral Reefs, Elsevier, 1990).
Negri, A., Webster, N., Hill, R. & Heyward, A. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131. https://doi.org/10.3354/meps223121 (2001).
Petersen, L.-E. et al. Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea. Coral Reefs 40, 381–394. https://doi.org/10.1007/s00338-021-02062-5 (2021).
Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221. https://doi.org/10.1128/AEM.70.2.1213-1221.2004 (2004).
Morse, D. E., Morse, A. N. C., Raimondi, P. T. & Hooker, N. Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol. Bull. 186, 172–181. https://doi.org/10.2307/1542051 (1994).
Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803. https://doi.org/10.1038/srep10803 (2015).
Abdul Wahab, M. A. et al. Hierarchical settlement behaviours of coral larvae to common coralline algae. Sci. Rep. 13, 5795. https://doi.org/10.1038/s41598-023-32676-4 (2023).
Jorissen, H. et al. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci. Rep. 11, 14610. https://doi.org/10.1038/s41598-021-94096-6 (2021).
Randall, C. J. et al. Larval precompetency and settlement behaviour in 25 Indo-Pacific coral species. Commun. Biol. 7, 1–15. https://doi.org/10.1038/s42003-024-05824-3 (2024).
Whitman, T. N. et al. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci. Rep. 10, 16397. https://doi.org/10.1038/s41598-020-73103-2 (2020).
Babcock, R. & Mundy, C. Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206, 179–201. https://doi.org/10.1016/S0022-0981(96)02622-6 (1996).
Ricardo, G. F. et al. Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Sci. Total Environ. 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079 (2021).
Fong, J. et al. Effects of material type and surface roughness of settlement tiles on macroalgal colonisation and early coral recruitment success. Coral Reefs 43, 1083–1096. https://doi.org/10.1007/s00338-024-02526-4 (2024).
Fong, J. et al. The interplay of temperature, light, and substrate type in driving growth and reproduction of an important tropical crustose coralline alga. J. Appl. Phycol. 36, 3133–3145. https://doi.org/10.1007/s10811-024-03312-z (2024).
Hoog Antink, M. M. et al. Porous ceramics with tailored pore size and morphology as substrates for coral larval settlement. Ceram. Int. 44, 16561–16571. https://doi.org/10.1016/j.ceramint.2018.06.078 (2018).
Lee, C. S., Walford, J. & Goh, B. P. L. Adding coral rubble to substrata enhances settlement of Pocillopora damicornis larvae. Coral Reefs 28, 529–533. https://doi.org/10.1007/s00338-009-0467-y (2009).
Leonard, C. et al. Performance of innovative materials as recruitment substrates for coral restoration. Restor. Ecol. 30, e13625. https://doi.org/10.1111/rec.13625 (2022).
Mallela, J., Milne, B. C. & Martinez-Escobar, D. A comparison of epibenthic reef communities settling on commonly used experimental substrates: PVC versus ceramic tiles. J. Exp. Mar. Biol. Ecol. 486, 290–295. https://doi.org/10.1016/j.jembe.2016.10.028 (2017).
Ramsby, B. D. et al. Developing seeding devices and rapid deployment methods for upscaling coral reef restoration. Restor. Ecol. 34, e70206. https://doi.org/10.1111/rec.70206 (2025).
Whitman, T. N. et al. Seeded Acropora digitifera corals survive best on wave-exposed reefs with grazing from small fishes. Restor. Ecol. 33, e70016. https://doi.org/10.1111/rec.70016 (2025).
Nordborg, F. M. et al. Standard operating procedure: Optimised larval settlement in a high throughput coral aquaculture facility. SOP prepared for the Reef Restoration and Adaptation Program. Australian Institute of Marine Science, Townsville QLD, 41 pp. https://gbrrestoration.org/wp-content/uploads/2025/07/SOP-Mass-settlement-of-coral-larvae.pdf (2024).
Ramsby, B. D. et al. Low light intensity increased survival of coral spat in aquaculture. Coral Reefs 43, 627–640. https://doi.org/10.1007/s00338-024-02489-6 (2024).
Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279. https://doi.org/10.1007/s003380050193 (1999).
Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).
Sharp, K. H. et al. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol. Bull. 228, 98–107. https://doi.org/10.1086/BBLv228n2p98 (2015).
Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96. https://doi.org/10.3354/meps09192 (2011).
O’Brien, P. A. et al. Light and dark biofilm adaptation impacts larval settlement in diverse coral species. Environ. Microbiome 20, 11. https://doi.org/10.1186/s40793-025-00670-0 (2025).
Turnlund, A. C. et al. Understanding the role of micro-organisms in the settlement of coral larvae through community ecology. Mar. Biol. 172, 43. https://doi.org/10.1007/s00227-025-04607-6 (2025).
Alker, A. T. et al. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis. ISME Commun. 3, 98. https://doi.org/10.1038/s43705-023-00309-6 (2023).
Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B 281, 20133086. https://doi.org/10.1098/rspb.2013.3086 (2014).
Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by Tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082. https://doi.org/10.1371/journal.pone.0019082 (2011).
Petersen, L. E. et al. Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement. Sci. Rep. 13, 3562. https://doi.org/10.1038/s41598-023-30470-w (2023).
Moeller, M., Nietzer, S. & Schupp, P. J. Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci. Rep. 9, 2291. https://doi.org/10.1038/s41598-019-38794-2 (2019).
Erwin, P. M. & Szmant, A. M. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs 29, 929–939. https://doi.org/10.1007/s00338-010-0634-1 (2010).
Iwao, K., Fujisawa, T. & Hatta, M. A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 21, 127–129. https://doi.org/10.1007/s00338-002-0219-8 (2002).
Shikina, S. et al. Involvement of GLWamide neuropeptides in polyp contraction of the adult stony coral Euphyllia ancora. Sci. Rep. 10, 9427. https://doi.org/10.1038/s41598-020-66438-3 (2020).
Takahashi, T. & Hatta, M. The importance of GLWamide neuropeptides in cnidarian development and physiology. J. Amino Acids 2011, 424501. https://doi.org/10.4061/2011/424501 (2011).
Takahashi, T. et al. Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proc. Natl. Acad. Sci. U.S.A. 94, 1241–1246. https://doi.org/10.1073/pnas.94.4.1241 (1997).
Kundu, S. et al. Biomimetic chemical microhabitats enhance coral settlement. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2025.03.019 (2025).
Fujiwara, S. et al. Effect of substratum structural complexity of coral seedlings on the settlement and post-settlement survivorship of coral settlers. Oceans 4, 1. https://doi.org/10.3390/oceans4010001 (2023).
Levenstein, M. A. et al. Millimeter-scale topography facilitates coral larval settlement in wave-driven oscillatory flow. PLoS ONE 17, e0274088. https://doi.org/10.1371/journal.pone.0274088 (2022).
Nozawa, Y. Effective size of refugia for coral spat survival. J. Exp. Mar. Biol. Ecol. 413, 145–149. https://doi.org/10.1016/j.jembe.2011.12.008 (2012).
Randall, C. J., Giuliano, C., Heyward, A. J. & Negri, A. P. Enhancing coral survival on deployment devices with microrefugia. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.662263 (2021).
Petersen, D., Laterveer, M. & Schuhmacher, H. Innovative substrate tiles to spatially control larval settlement in coral culture. Mar. Biol. 146, 937–942. https://doi.org/10.1007/s00227-004-1503-7 (2005).
Whalan, S. et al. Larval settlement: the role of surface topography for sessile coral reef invertebrates. PLoS ONE 10, e0117675. https://doi.org/10.1371/journal.pone.0117675 (2015).
Foster, T. & Gilmour, J. P. Seeing red: Coral larvae are attracted to healthy looking reefs. Mar. Ecol. Prog. Ser. 559, 65–71. https://doi.org/10.3354/meps11902 (2016).
Mason, B., Beard, M. & Miller, M. W. Coral larvae settle at a higher frequency on red surfaces. Coral Reefs 30, 667–676. https://doi.org/10.1007/s00338-011-0739-1 (2011).
Bridge, T. C. L. et al. A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the Acropora tenuis species complex. Zool. J. Linn. Soc. 202, zlad062. https://doi.org/10.1093/zoolinnean/zlad062 (2024).
Grasso, L. C. et al. The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev. Biol. 353, 411–419. https://doi.org/10.1016/j.ydbio.2011.02.010 (2011).
Leitz, T., Morand, K. & Mann, M. Metamorphosin A: A novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev. Biol. 163, 440–446. https://doi.org/10.1006/dbio.1994.1160 (1994).
Brunner, R. Investigating receptors and signalling pathways of coral settlement and metamorphosis using proteomics, transcriptomics and phylogenetics [PhD, James Cook University]. James Cook University Research Repository; https://doi.org/10.25903/ggd7-xe43 (2023).
Di Mauro, V. et al. Ecotoxicological effects of four commonly used organic solvents on the scleractinian coral Montipora digitata. Toxics 11, 4. https://doi.org/10.3390/toxics11040367 (2023).
Abdul Wahab, M. A. et al. Standard operating procedure: Coral spawning, larval culturing and the production of coral spats in aquaculture for reef restoration. SOP prepared for the Reef Restoration and Adaptation Program. 36 (Australian Institute of Marine Science, Townsville, QLD, 2022)
Karacan, I. et al. The synthesis of hydroxyapatite from artificially grown Red Sea hydrozoan coral for antimicrobacterial drug delivery system applications. J. Aust. Ceram. Soc. 57, 399–407. https://doi.org/10.1007/s41779-020-00554-1 (2021).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.org/ (2023).
Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9, 378–400. https://doi.org/10.32614/RJ-2017-066 (2017).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.7; https://github.com/florianhartig/dharma (2024).
Wickham, H. ggplot2: Elegant graphics for data analysis. R package version 3.5.2. (Springer-Verlag, New York, 2016).
Bartoń, K. MuMIn: Multi-model inference. R package version 1.47.5 (2023).
Müller, W. A. & Leitz, T. Metamorphosis in the Cnidaria. Can. J. Zool. 80, 1755–1771. https://doi.org/10.1139/z02-130 (2002).
Ishii, Y. et al. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. Zoolog Lett. 8, 4. https://doi.org/10.1186/s40851-022-00187-1 (2022).
Schindler, S. & Bechtold, T. Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry. J. Electroanal. Chem. 836, 94–101. https://doi.org/10.1016/j.jelechem.2019.01.069 (2019).
Amar, K. O., Chadwick, N. E. & Rinkevich, B. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol. Biol. 8, 126. https://doi.org/10.1186/1471-2148-8-126 (2008).
Doropoulos, C., Evensen, N. R., Gómez-Lemos, L. A. & Babcock, R. C. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages. R. Soc. Open Sci. 4, 170082. https://doi.org/10.1098/rsos.170082 (2017).
Jiang, L. et al. Gregarious larval settlement mediates the responses of new recruits of the reef coral Acropora austera to ocean warming and acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.964803 (2022).
Puill-Stephan, E., van Oppen, M. J. H., Pichavant-Rafini, K. & Willis, B. L. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral. Acropora millepora. Proc. R. Soc. B 279, 699–708. https://doi.org/10.1098/rspb.2011.1035 (2012).
Raymundo, L. & Maypa, A. Recovery of the Apo Island Marine Reserve, Philippines, 2 years after the El Niño bleaching event. Coral Reefs 21, 3. https://doi.org/10.1007/s00338-002-0237-6 (2002).
Rinkevich, B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Change Biol. 25, 1198–1206. https://doi.org/10.1111/gcb.14576 (2019).
Shefy, D., Shashar, N. & Rinkevich, B. Exploring traits of engineered coral entities to be employed in reef restoration. J. Mar. Sci. Eng. 8, 1038. https://doi.org/10.3390/jmse8121038 (2020).
Vidal-Dupiol, J. et al. Frontloading of stress response genes enhances robustness to environmental change in chimeric corals. BMC Biol. 20, 167. https://doi.org/10.1186/s12915-022-01371-7 (2022).
Carleton, J. H. & Sammarco, P. W. Effects of substratum irregularity on success of coral settlement: Quantification by comparative geomorphological techniques. Bull. Mar. Sci. 40, 85–98 (1987).
Scardino, A. J., Harvey, E. & De Nys, R. Testing attachment point theory: Diatom attachment on microtextured polyimide biomimics. Biofouling 22, 55–60. https://doi.org/10.1080/08927010500506094 (2006).
Nishikawa, A., Katoh, M. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar. Ecol. Prog. Ser. 256, 87–97. https://doi.org/10.3354/meps256087 (2003).
