Distinct Limosilactobacillus reuteri microcapsule models: construction and therapeutic evaluation in DSS-induced colitis mice

distinct-limosilactobacillus-reuteri-microcapsule-models:-construction-and-therapeutic-evaluation-in-dss-induced-colitis-mice
Distinct Limosilactobacillus reuteri microcapsule models: construction and therapeutic evaluation in DSS-induced colitis mice

References

  1. Hojsak, I. Probiotics in children: what is the evidence?. Pediatr. Gastroenterol. Hepatol. Nutr. 20, 139–146 (2017).

    Google Scholar 

  2. Woodhams, L. & Al-Salami, H. The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus. Ther. Deliv. 8, 401–409 (2017).

    Google Scholar 

  3. Xu, Y., Zhang, T. & Xia, L. Effects of Lactiplantibacillus plantarum JBP3 and Limosilactobacillus reuteri JBR3 on the quality of beef jerky. Sci. Technol. Food Ind. 1–14 (2024).

  4. Lee, B. S. et al. Safety assessment of Lactobacillus reuteri IDCC 3701based on phenotypic and genomic analysis. Ann. Microbiol. 71, 1–6 (2021).

    Google Scholar 

  5. Jiang, J. et al. Limosilactobacillus reuteri regulating intestinal function: a review. Fermentation 9, 19 (2022).

    Google Scholar 

  6. Liu, H. Y. et al. Epithelial heat shock proteins mediate the protective effects of Limosilactobacillus reuteri in dextran sulfate sodium-induced colitis. Front. Immunol. 13, 865982 (2022).

    Google Scholar 

  7. Khalique, A. et al. Probiotics mitigating subclinical necrotic enteritis(SNE) as potential alternatives to antibiotics in poultry. AMB Express 10, 50 (2020).

    Google Scholar 

  8. Bender, M. J. et al. Dietary tryptophan metabolite released byintratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862.e26 (2023).

    Google Scholar 

  9. Bernard, N. J. Probiotics boost immunotherapy. Nat. Immunol. 24, 732 (2023).

    Google Scholar 

  10. Wilkins, T. & Sequoia, J. Probiotics for gastrointestinal conditions: a summary of the evidence. Am. Fam. Physician 96, 170–178 (2017).

    Google Scholar 

  11. Wang, K. et al. Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device. Food Res. Int. 160, 111723 (2022).

    Google Scholar 

  12. Mohamadzadeh, M., Fazeli, A. & Shojaosadati, S. A. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: a review. Int. J. Biol. Macromol. 259, 129287 (2024).

    Google Scholar 

  13. Maciel, G. M. et al. Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. J. Dairy Sci. 97, 1991–1998 (2014).

    Google Scholar 

  14. Wang, L. et al. A physically cross-linked sodium alginate–gelatin hydrogel with high mechanical strength. ACS Appl. Polym. Mater. 3, 3197–3205 (2021).

    Google Scholar 

  15. Deng, L. et al. Calcium alginate-encapsulated propolis microcapsules: optimization, characterization, and preservation effects on postharvest sweet cherry. Int. J. Biol. Macromol. 282, 137473 (2024).

    Google Scholar 

  16. Anselmo, A. C. et al. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28, 9486–9490 (2016).

    Google Scholar 

  17. Jiménez-Gómez C. P., Cecilia J. A. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules 25, 3981 (2020).

  18. Divya, K., Smitha, V. & Jisha, M. S. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int. J. Biol. Macromol. 114, 572–577 (2018).

    Google Scholar 

  19. Wu, D. et al. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr. Polym. 238, 116126 (2020).

    Google Scholar 

  20. Jones, S. E. & Versalovic, J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 9, 35 (2009).

    Google Scholar 

  21. Li, S. et al. Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet. Food Funct. 10, 4705–4715 (2019).

    Google Scholar 

  22. Long, H. et al. The protective effect and immunomodulatory ability of orally administrated Lacticaseibacillus rhamnosus GG against Mycoplasma pneumoniae infection in BALB/c mice. PloS One 19, e0312318 (2024).

    Google Scholar 

  23. Yu, Z. et al. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front. Microbiol. 14, 1095555 (2023).

    Google Scholar 

  24. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Google Scholar 

  25. Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).

    Google Scholar 

  26. Jo, J. & Tabata, Y. How controlled release technology can aid gene delivery. Expert Opin. Drug Deliv. 12, 1689–1701 (2015).

    Google Scholar 

  27. Kanamala, M. et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016).

    Google Scholar 

  28. Bae, Y. H. & Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 153, 198–205 (2011).

    Google Scholar 

  29. Shi, T. ongrui, Cui, Y. uchao & Wang, L. ikun Effecting factors of the formation and encapsulation efficiency of chitosan-alginate sodium microencapsules. J. Anim. Sci. Vet. Med. 38, 52–55 (2019).

    Google Scholar 

  30. Tan, P. Y. et al. Pickering emulsion-templated ionotropic gelation of tocotrienol microcapsules: effects of alginate and chitosan concentrations and gelation process parameters. J. Sci. food Agric. 101, 5963–5971 (2021).

    Google Scholar 

  31. Xiang, Z. henghao, Zhou, H. ualan & Zhang, J. iangguo Preparation of sodium alginate microcapsules and their application in microbial embedding. Ind. Microorg. 51, 43–49 (2021).

    Google Scholar 

  32. Rahman, Z. et al. Characterization of 5-fluorouracil microspheres for colonic delivery. AAPS PharmSciTech 7, E47 (2006).

    Google Scholar 

  33. Hongxia gao. Construction of probiotic delivery system and its gastrointestinal environment protection [Thesis], (2023).

  34. Ahl, D. et al. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta Physiol. 217, 300–310 (2016).

    Google Scholar 

  35. Vijayaganapathi, A. & Mohanasrinivasan, V. A review of next-generation probiotics-as a gateway to biotherapeutics. Probiotics Antimicrob. Proteins 17, 1985–1997 (2025).

    Google Scholar 

  36. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China – Part IV. In. Beijing: China Medical Science and Technology Press; pp. 129-130 (2020).

  37. Ma, H. angyu, Zhang, S. hikai & Wu, P. eng Preparation and digestive tolerance of compound prebiotic microcapsules. Food Res. Dev. 44, 152–161 (2023).

    Google Scholar 

  38. George, M. & Abraham, T. E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J. Control. Release 114, 1–14 (2006).

    Google Scholar 

  39. Yang, J. unjie, Hu, G. uangmin & Zhu, M. eifang The dissolution behavior of chitosan and its fiber research progress. Prog. Mater. China 33, 641–648+689 (2014).

    Google Scholar 

  40. Donati, I. & Christensen, B. E. Alginate-metal cation interactions: macromolecular approach. Carbohydr. Polym. 321, 121280 (2023).

    Google Scholar 

  41. Guangyu Ren. Preparation of probiotic dual strain microcapsules and their mechanism of alleviating bacterial enteritis [Thesis]; (2022).

  42. Yang, S. unqin, Ge, W. ei & Zhang, L. eichang The effect of gold juice fecal microbiota transplantation on disease activity index and inflammatory response in mice with damp heat ulcerative colitis. Drug Eval. 20, 139–143 (2023).

    Google Scholar 

  43. Wenbing Hu. Genomic diversity of Clostridium perfringens and mechanism analysis of strain CCFM1204 in alleviating non-alcoholic fatty liver disease [Thesis]; (2022).

  44. López-Aladid, R. et al. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci. Rep. 13, 3974 (2023).

    Google Scholar 

Download references