References
-
Berglund, B. Genetic improvement of dairy cow reproductive performance. Reprod. Domest. Anim. 43, 89–95 (2008).
-
Bonilla, L., Block, J., Denicol, A. C. & Hansen, P. J. Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf. J. Dairy. Sci. 97, 229–239 (2014).
-
Ferré, L. B. et al. Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 14, 991–1004 (2020). Review.
-
Viana, J. H. Statistics of embryo production and transfer in domestic farm animals. Embryo Tecnology Newsl. 40, 22–40 (2022).
-
Stroebech, L. et al. In vitro production of bovine embryos: revisiting oocyte development and application of systems biology. Anim. Reprod. 12, 465–472 (2015).
-
Hyttel, P., Xu, K. P., Smith, S. & Greve, T. Ultrastructure of in-vitro oocyte maturation in cattle. J. Reprod. Fertil. 78, 615–625 (1986).
-
Sirard, M. A. & Blondin, P. Oocyte maturation and IVF in cattle. Anim. Reprod. Sci. 42, 417–426 (1996).
-
Meirelles, F. V. et al. Genome activation and developmental block in bovine embryos. Anim. Reprod. Sci. 82–83, 13–20 (2004).
-
Sutton, M. L., Gilchrist, R. B. & Thompson, J. G. Effect of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update. 9, 35–48 (2003).
-
Han, C. et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab. Chip. 10, 2848–2854 (2010).
-
Heo, Y. S., Cabrera, L. M., Bormann, C. L., Smith, G. D. & Takayama, S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab. Chip. 12, 2240–2246 (2012).
-
McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S. M. & Speake, B. K. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact Zona pellucida. J. Reprod. Fertil. 118, 163–170 (2000).
-
Amstislavsky, S., Mokrousova, V., Brusentsev, E., Okotrub, K. & Comizzoli, P. Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: A review. Biopreserv Biobank. 17, 76–83 (2019).
-
Jin, J. X., Lee, S., Taweechaipaisankul, A., Kim, G. A. & Lee, B. C. Melatonin regulates lipid metabolism in Porcine oocytes. J. Pineal Res. 62, 1–10 (2017).
-
Oliveira, C. S., Feuchard, V. L., da, S. & de Marques, S. C. Saraiva, N. Z. Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. Zygote 30, 258–266 (2022).
-
Xu, X. et al. Effects of β-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes.. Antioxidants 12, 1–18 (2023).
-
McKeegan, P. J. & Sturmey, R. G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 59–67 (2011).
-
Leroy, J. L. M. R. et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495 (2005).
-
Oskouei, B. S., Zargari, S., Shahabi, P., Novin, M. G. & Pashaiasl, M. Design and microfabrication of an on-chip oocyte maturation system for reduction of apoptosis. Cell. J. 23, 32–39 (2021).
-
Oskouei, S. et al. Evaluation of mouse oocyte in vitro maturation developmental competency in dynamic culture systems by design and construction of a lab on a chip device and its comparison with conventional culture system. Cell. J. 18, 205–213 (2016).
-
Sequeira, R. C., Criswell, T., Atala, A. & Yoo, J. J. Microfluidic systems for assisted reproductive technologies: advantages and potential applications. Tissue Eng. Regen Med. 17, 787–800 (2020).
-
Wu, T., Wu, Y., Yan, J., Zhang, J. & Wang, S. Microfluidic chip as a promising evaluation method in assisted reproduction: A systematic review. Bioeng. Transl Med. 9, 1–19 (2024).
-
Weng, L. et al. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. Lab. Chip. 18, 3892–3902 (2018).
-
Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 1–13 (2017).
-
Ferraz, M. et al. Mimicking the bovine oviduct in a microfluidic device for advanced embryo in vitro culture systems. 21st Int. Conf. Miniaturized Syst. Chem. Life Sci. MicroTAS 2017. 1, 1047–1048 (2020).
-
Liu, J., Lee, G. Y., Biggers, J. D., Toth, T. L. & Toner, M. Low cryoprotectant concentration rapid vitrification of mouse oocytes and embryos. Cryobiology 98, 233–238 (2021).
-
Kashaninejad, N., Shiddiky, M. J. A. & Nguyen, N. T. Advances in Microfluidics-Based assisted reproductive technology: from sperm sorter to reproductive System-on-a-Chip. Adv. Biosyst. 2, 1–21 (2018).
-
Swain, J. E. & Smith, G. D. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum. Reprod. Update. 17, 541–557 (2011).
-
Stringfellow, D. A. & Givens, M. D. Manual of the International embryo transfer society (IETS) (IELTS, 1990).
-
Luo, Z. Y. et al. Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluidics. 19, 883–890 (2015).
-
Lei, K. F., Chang, C. H. & Chen, M. J. Paper/PMMA hybrid 3D cell culture microfluidic platform for the study of cellular crosstalk. ACS Appl. Mater. Interfaces. 9, 13092–13101 (2017).
-
Song, K. Y., Zhang, H., Zhang, W. J. & Teixeira, A. Enhancement of the surface free energy of PDMS for reversible and leakage-free bonding of PDMS–PS microfluidic cell-culture systems. Microfluid Nanofluidics. 22, 1–9 (2018).
-
Vit, F. F. et al. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal. Chim. Acta. 1185, 1–13 (2021).
-
del Collado, M. et al. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci. Rep. 7, 1–13 (2017).
-
Aardema, H. et al. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid Storage1. Biol. Reprod. 88 (1–15), 164 (2013).
-
Aardema, H. et al. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid Storage1. Biol. Reprod. 88, 164, 1–15 (2013).
-
Lolicato, F. et al. The cumulus cell layer protects the bovine maturing oocyte against fatty Acid-Induced Lipotoxicity1. Biol. Reprod. 92, 16, 1–16 (2015).
-
de Lima, C. B., Barbosa, G. Z., Ispada, J., dos Santos, E. C. & Milazzotto, M. P. Lipid availability during in vitro maturation alters oocyte lipid content and blastocyst development and metabolism. Reprod. Domest. Anim. 58, 920–928 (2023).
-
Luvoni, G. C. et al. Effect of gonadotropins during in vitro maturation of feline oocytes on oocyte–cumulus cells functional coupling and intracellular concentration of glutathione. Anim. Reprod. Sci. 96, 66–78 (2006).
-
Guerin, P., Mouatassim, S. & Ménézo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 7, 175–189 (2001).
-
Cetica, P. D., Pintos, L. N., Dalvit, G. C. & Beconi, M. T. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life. 51, 57–64 (2001).
-
Sun, J. et al. Bioengineering high-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci Adv vol. 8 (2022). https://www.science.org
-
Nardini Cecchino, G. et al. Mitochondria their relevance during oocyte ageing. Ageing Res. Rev. 70, 101378 (2021).
-
Harvey, A. J. Reproduction review Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. (2019). https://doi.org/10.1530/REP doi:10.1530/REP.
-
Van Soom, A., Ysebaert, M. T. & De Kruif, A. Relationship between timing of development, Morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56 (1997).
-
Ochota, M., Wojtasik, B. & Nizański, W. Total cell number and its allocation to trophectoderm and inner cell mass in in vitro obtained cats’ blastocysts. Reprod. Domest. Anim. 51, 339–345 (2016).
-
Vit, F. F., Wu, Y. T., Fujiwara, E., Carvalho, H. F. & la Torre, L. G. de. Microfluidic chip for synergic drugs assay in 3D breast cancer cell. Microfluid Nanofluidics. 28, 1–16 (2024).
-
Madadi, M., Madadi, A., Zareifar, R. & Nikfarjam, A. A simple solvent-assisted method for thermal bonding of large-surface, multilayer PMMA microfluidic devices. Sens. Actuators Phys. 349, 114077 (2023).
