References
-
Hansen, B. B. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 121 (3), 1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385 (2020).
-
Mungwari, C. P., King’Ondu, C. K., Sigauke, P. & Obadele, B. A. Conventional and modern techniques for bioactive compounds recovery from plants: review. Sci. Afr. 27, e02509. https://doi.org/10.1016/j.sciaf.2024.e02509 (2025).
-
Makoś-Chełstowska, P., Słupek, E., Fourmentin, S. & Gębicki, J. Supramolecular deep eutectic solvents in extraction processes: a review. Environ. Chem. Lett. 23 (1), 41–65. https://doi.org/10.1007/s10311-024-01795-3 (2024).
-
Waluyo, E., Arini, L. H. Y., Kusuma, B., Nursyam, H. & Amanda, D. V. Natural deep eutectic solvents (NADES) research framework: bibliometric analysis. Int. J. Biochem. Res. Rev. 33 (6), 569–584. https://doi.org/10.9734/ijbcrr/2024/v33i6937 (2024).
-
Huang, M. M. et al. Natural deep eutectic solvents (NADES) for sustainable extraction of bioactive compounds from medicinal plants: recent advances, challenges, and future directions. J. Mol. Liq. 425, 127202. https://doi.org/10.1016/j.molliq.2025.127202 (2025).
-
Grozdanova, T. et al. Extracts of medicinal plants with natural deep eutectic solvents: enhanced antimicrobial activity and low genotoxicity. BMC Chem. 14 (1). https://doi.org/10.1186/s13065-020-00726-x (2020).
-
Petkov, H. et al. Green extraction of antioxidants from natural sources with natural deep eutectic solvents. C R Acad. Bulg. Sci. 75 (8), 1129–1137. https://doi.org/10.7546/crabs.2022.08.05 (2022).
-
Rente, D., Paiva, A. & Duarte, A. R. The role of hydrogen bond donor on the extraction of phenolic compounds from natural matrices using deep eutectic systems. Molecules 26 (8), 2336. https://doi.org/10.3390/molecules26082336 (2021).
-
Oliva, E. et al. Green extraction of phenolic compounds from strawberry waste based on natural deep eutectic solvents. Int. J. Food Sci. Tech. 59 (6), 3967–3977. https://doi.org/10.1111/ijfs.17148 (2024).
-
Dzhavakhyan, M. A. et al. Eutectic solvents for the extraction of phenolic compounds from the Moldovan Dragonhead. Farmaciya Published Online Dec. 1, 26–31. https://doi.org/10.29296/25419218-2024-07-04 (2024).
-
Prasetyaningrum, A., Haryani, K., Jos, B. & Prinanda, G. R. Comparison of Sequential Microwave/ultrasound and Microwave Extraction of Total Phenolic Compounds from Moringa Oleifera L. https://doi.org/10.1063/5.0130082 (American Institute Of Physics, 2023).
-
Khan, R. S., Siddique, R. & Khan, S. S. Radish (Raphanus Sativus): potential antioxidant role of bioactive compounds extracted from radish leaves – A review. PJMHS 16 (9), 2–4. https://doi.org/10.53350/pjmhs221692 (2022).
-
Yoon, W., Park, M., Yoo, G., Kim, Y. S. & Park, H. Y. Bioactive compounds and health benefits of radish Greens. J. Agric. Food Chem. 1 https://doi.org/10.1021/acs.jafc.5c08263 (2025).
-
Wu, L., Li, L., Chen, S., Wang, L. & Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa Oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247, 117014. https://doi.org/10.1016/j.seppur.2020.117014 (2020).
-
Jensen, W. A. Design and analysis of experiments by Douglas montgomery: A supplement for using JMP®. J. Qual. Technol. 46 (2), 181. https://doi.org/10.1080/00224065.2014.11917962 (2014).
-
Wang, R., Wang, L., He, R., Zhang, W. & Li, W. Customized deep eutectic solvents as green extractants for Ultrasonic-Assisted enhanced extraction of phenolic antioxidants from Dogbane Leaf-Tea. Foods 10 (11), 2527. https://doi.org/10.3390/foods10112527 (2021).
-
Mu, L. et al. Research progress on deep eutectic solvents and recent applications. Processes 11 (7), 1986. https://doi.org/10.3390/pr11071986 (2023).
-
De Almeida Pontes, P. V., Ayumi Shiwaku, I., Maximo, G. J. & Caldas Batista, E. A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from Olive leaves: extraction optimization and solvent characterization. Food Chem. 352, 129346. https://doi.org/10.1016/j.foodchem.2021.129346 (2021).
-
Sari, I., Zulaicha, A., Triyanti, S. & Choline chloride based deep eutectic solvents: physicochemical properties and spectroscopic insights. Anal Environ. Chem Published Online November. 13, 23–34. https://doi.org/10.23960/analit.v9i02.200 (2024).
-
Ibrahim, A., Espitalier, F., Coquelet, C. & Tshibangu, M. M. Ternary choline Chloride-Based deep eutectic solvents: A review. ChemEngineering 9 (4), 84. https://doi.org/10.3390/chemengineering9040084 (2025).
-
Correction to, W. et al. Experimental Psychology 68 (6), 340. https://doi.org/10.1027/1618-3169/a000538 (2021).
-
Akomeng, N. & Adusei, S. Organic solvent extraction and spectrophotometric quantification of total phenolic compounds in soil. SSRN J. 1 https://doi.org/10.2139/ssrn.3903924 (2021).
-
Aliaño-González, M. J. et al. Ultrasound-Assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy 12 (8), 1812. https://doi.org/10.3390/agronomy12081812 (2022).
-
Nurlinda, N., Rasyid, F. A. & Handayani, V. Spectrophotometric determination of total flavonoid content in Biancaea Sappan (Caesalpinia Sappan L.) leaves. IJPF 8 (3), 1–4. https://doi.org/10.33096/jffi.v8i3.712 (2021).
-
Shraim, A. M., Ahmed, T. A., Rahman, M. M. & Hijji, Y. M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932 (2021).
-
Choi, Y. H. & Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 26, 87–93. https://doi.org/10.1016/j.cofs.2019.04.003 (2019).
-
Zhang, M. et al. Advances of responsive deep eutectic solvents and application in extraction and separation of bioactive compounds. J. Sep. Sci. 46 (15). https://doi.org/10.1002/jssc.202300098 (2023).
-
Baliyan, S. et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules 27 (4), 1326. https://doi.org/10.3390/molecules27041326 (2022).
-
Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature 181 (4617), 1199–1200. https://doi.org/10.1038/1811199a0 (1958).
-
Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 28 (1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5 (1995).
-
Sanou, A. et al. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. 2 https://doi.org/10.21203/rs.3.rs-1926596/v1 (2022).
-
Jebli, Z. et al. Ultrasound-assisted extraction, optimisation using response surface methodology and HPLC-DAD phenolic compounds quantification from passiflora Edulis S. peels cultivated in Tunisia. Nat. Prod. Res. 1–9. https://doi.org/10.1080/14786419.2024.2380013 (2024).
-
Alotaibi, M. A. et al. Exploring the dynamic world of ternary deep eutectic solvents: Synthesis, characterization, and key properties unveiled. Heliyon 10 (22), e40521. https://doi.org/10.1016/j.heliyon.2024.e40521 (2024).
-
Solcan, M. B. et al. Antimicrobial effectiveness of Ribes nigrum L. Leaf extracts prepared in natural deep eutectic solvents (NaDESs). Antibiotics 13 (12), 1118. https://doi.org/10.3390/antibiotics13121118 (2024).
-
Yoon, H. I. et al. Predicting models for plant metabolites based on PLSR, AdaBoost, XGBoost, and LightGBM algorithms using hyperspectral imaging of brassica juncea. Agriculture 13 (8), 1477. https://doi.org/10.3390/agriculture13081477 (2023).
-
Arif Ali, Z., Bibo Sallow, A., Tahir, A., Abduljabbar, H. H. & Almufti, Z. eXtreme gradient boosting algorithm with machine learning: a review. ACAD. J. NAWROZ UNIV. 12 (2), 320–334. https://doi.org/10.25007/ajnu.v12n2a1612 (2023).
-
Hakam, A. et al. Sonic log prediction based on extreme gradient boosting (XGBoost) machine learning algorithm by using well log data. BIO Web Conf. 89, 09003. https://doi.org/10.1051/bioconf/20248909003 (2024).
-
Saberi, A., Raissi, H., Zaboli, A. & Hashemzadeh, H. Optimizing saffron bioactive extraction with deep eutectic solvents. Sci. Rep. 15 (1). https://doi.org/10.1038/s41598-025-99695-1 (2025).
-
Mohammed, E. A. et al. Effects of extraction solvents on the total phenolic Content, total flavonoid Content, and antioxidant activity in the aerial part of root vegetables. Agriculture 12 (11), 1820. https://doi.org/10.3390/agriculture12111820 (2022).
-
Kivelä, H. et al. Effect of water on a hydrophobic deep eutectic solvent. J. Phys. Chem. B. 126 (2), 513–527. https://doi.org/10.1021/acs.jpcb.1c08170 (2022).
-
Sanou, A. et al. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Sci. Rep. 13 (1). https://doi.org/10.1038/s41598-023-27434-5 (2023).
-
Tsvetov, N., Paukshta, O., Fokina, N., Volodina, N. & Samarov, A. Application of natural deep eutectic solvents for extraction of bioactive components from Rhodiola rosea (L). Molecules 28 (2), 912. https://doi.org/10.3390/molecules28020912 (2023).
-
Kolarević, L., Horozić, E., Ademović, Z., Kundalić, B. Š. & Husejnagić, D. Influence of deep eutectic solvents (DESs) on antioxidant and antimicrobial activity of seed extracts of selected citrus species. IRJPAC Published Online Dec. 14, 120–128. https://doi.org/10.9734/irjpac/2020/v21i2330309 (2020).
-
Akbar, N. et al. Antimicrobial activity of novel deep eutectic solvents. Sci. Pharm. 91 (1), 9. https://doi.org/10.3390/scipharm91010009 (2023).
-
Ren, S., Mu, T. & Wu, W. Advances in deep eutectic solvents: new green solvents. Processes 11 (7), 1920. https://doi.org/10.3390/pr11071920 (2023).
-
Helmi, M., Khoshdouni Farahani, Z., Hemmati, A. & Ghaemi, A. Facile synthesis of Persian gum–graphene oxide composite as a novel adsorbent for CO2 capture: characterization and optimization. Sci. Rep. 14 (1). https://doi.org/10.1038/s41598-024-56070-w (2024).
-
Coffie, G. H. & Cudjoe, S. K. F. Using extreme gradient boosting (XGBoost) machine learning to predict construction cost overruns. Int. J. Constr. Manage. 24 (16), 1742–1750. https://doi.org/10.1080/15623599.2023.2289754 (2023).
-
Munsif, M., Jabeen, F. & Rashid, M. An efficient hybrid classification model for heart disease prediction. 31 https://doi.org/10.21203/rs.3.rs-3863899/v1 (2024).
-
Dalal, S., Onyema, E. M. & Malik, A. Hybrid XGBoost model with hyperparameter tuning for prediction of liver disease with better accuracy. World J. Gastroenterol. 28 (46), 6551–6563. https://doi.org/10.3748/wjg.v28.i46.6551 (2022).
-
M. L. Prediction of liver disease using machine learning. IJARSCT 234–241. https://doi.org/10.48175/ijarsct-5673 (2022).
-
Aiwale, S., Mali, V., Patil, P., Patil, V. & Kamble, G. Liver disease prediction. IRJMETS 24 https://doi.org/10.56726/irjmets47243 (2023).
