Eco friendly deep eutectic solvent based extraction of Raphanus sativus leaf bioactives with mechanistic and antibacterial evaluation

eco-friendly-deep-eutectic-solvent-based-extraction-of-raphanus-sativus-leaf-bioactives-with-mechanistic-and-antibacterial-evaluation
Eco friendly deep eutectic solvent based extraction of Raphanus sativus leaf bioactives with mechanistic and antibacterial evaluation

References

  1. Hansen, B. B. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 121 (3), 1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385 (2020).

    Google Scholar 

  2. Mungwari, C. P., King’Ondu, C. K., Sigauke, P. & Obadele, B. A. Conventional and modern techniques for bioactive compounds recovery from plants: review. Sci. Afr. 27, e02509. https://doi.org/10.1016/j.sciaf.2024.e02509 (2025).

    Google Scholar 

  3. Makoś-Chełstowska, P., Słupek, E., Fourmentin, S. & Gębicki, J. Supramolecular deep eutectic solvents in extraction processes: a review. Environ. Chem. Lett. 23 (1), 41–65. https://doi.org/10.1007/s10311-024-01795-3 (2024).

    Google Scholar 

  4. Waluyo, E., Arini, L. H. Y., Kusuma, B., Nursyam, H. & Amanda, D. V. Natural deep eutectic solvents (NADES) research framework: bibliometric analysis. Int. J. Biochem. Res. Rev. 33 (6), 569–584. https://doi.org/10.9734/ijbcrr/2024/v33i6937 (2024).

    Google Scholar 

  5. Huang, M. M. et al. Natural deep eutectic solvents (NADES) for sustainable extraction of bioactive compounds from medicinal plants: recent advances, challenges, and future directions. J. Mol. Liq. 425, 127202. https://doi.org/10.1016/j.molliq.2025.127202 (2025).

    Google Scholar 

  6. Grozdanova, T. et al. Extracts of medicinal plants with natural deep eutectic solvents: enhanced antimicrobial activity and low genotoxicity. BMC Chem. 14 (1). https://doi.org/10.1186/s13065-020-00726-x (2020).

  7. Petkov, H. et al. Green extraction of antioxidants from natural sources with natural deep eutectic solvents. C R Acad. Bulg. Sci. 75 (8), 1129–1137. https://doi.org/10.7546/crabs.2022.08.05 (2022).

    Google Scholar 

  8. Rente, D., Paiva, A. & Duarte, A. R. The role of hydrogen bond donor on the extraction of phenolic compounds from natural matrices using deep eutectic systems. Molecules 26 (8), 2336. https://doi.org/10.3390/molecules26082336 (2021).

    Google Scholar 

  9. Oliva, E. et al. Green extraction of phenolic compounds from strawberry waste based on natural deep eutectic solvents. Int. J. Food Sci. Tech. 59 (6), 3967–3977. https://doi.org/10.1111/ijfs.17148 (2024).

    Google Scholar 

  10. Dzhavakhyan, M. A. et al. Eutectic solvents for the extraction of phenolic compounds from the Moldovan Dragonhead. Farmaciya Published Online Dec. 1, 26–31. https://doi.org/10.29296/25419218-2024-07-04 (2024).

    Google Scholar 

  11. Prasetyaningrum, A., Haryani, K., Jos, B. & Prinanda, G. R. Comparison of Sequential Microwave/ultrasound and Microwave Extraction of Total Phenolic Compounds from Moringa Oleifera L. https://doi.org/10.1063/5.0130082 (American Institute Of Physics, 2023).

  12. Khan, R. S., Siddique, R. & Khan, S. S. Radish (Raphanus Sativus): potential antioxidant role of bioactive compounds extracted from radish leaves – A review. PJMHS 16 (9), 2–4. https://doi.org/10.53350/pjmhs221692 (2022).

    Google Scholar 

  13. Yoon, W., Park, M., Yoo, G., Kim, Y. S. & Park, H. Y. Bioactive compounds and health benefits of radish Greens. J. Agric. Food Chem. 1 https://doi.org/10.1021/acs.jafc.5c08263 (2025).

  14. Wu, L., Li, L., Chen, S., Wang, L. & Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa Oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247, 117014. https://doi.org/10.1016/j.seppur.2020.117014 (2020).

    Google Scholar 

  15. Jensen, W. A. Design and analysis of experiments by Douglas montgomery: A supplement for using JMP®. J. Qual. Technol. 46 (2), 181. https://doi.org/10.1080/00224065.2014.11917962 (2014).

    Google Scholar 

  16. Wang, R., Wang, L., He, R., Zhang, W. & Li, W. Customized deep eutectic solvents as green extractants for Ultrasonic-Assisted enhanced extraction of phenolic antioxidants from Dogbane Leaf-Tea. Foods 10 (11), 2527. https://doi.org/10.3390/foods10112527 (2021).

    Google Scholar 

  17. Mu, L. et al. Research progress on deep eutectic solvents and recent applications. Processes 11 (7), 1986. https://doi.org/10.3390/pr11071986 (2023).

    Google Scholar 

  18. De Almeida Pontes, P. V., Ayumi Shiwaku, I., Maximo, G. J. & Caldas Batista, E. A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from Olive leaves: extraction optimization and solvent characterization. Food Chem. 352, 129346. https://doi.org/10.1016/j.foodchem.2021.129346 (2021).

    Google Scholar 

  19. Sari, I., Zulaicha, A., Triyanti, S. & Choline chloride based deep eutectic solvents: physicochemical properties and spectroscopic insights. Anal Environ. Chem Published Online November. 13, 23–34. https://doi.org/10.23960/analit.v9i02.200 (2024).

    Google Scholar 

  20. Ibrahim, A., Espitalier, F., Coquelet, C. & Tshibangu, M. M. Ternary choline Chloride-Based deep eutectic solvents: A review. ChemEngineering 9 (4), 84. https://doi.org/10.3390/chemengineering9040084 (2025).

    Google Scholar 

  21. Correction to, W. et al. Experimental Psychology 68 (6), 340. https://doi.org/10.1027/1618-3169/a000538 (2021).

  22. Akomeng, N. & Adusei, S. Organic solvent extraction and spectrophotometric quantification of total phenolic compounds in soil. SSRN J. 1 https://doi.org/10.2139/ssrn.3903924 (2021).

  23. Aliaño-González, M. J. et al. Ultrasound-Assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy 12 (8), 1812. https://doi.org/10.3390/agronomy12081812 (2022).

    Google Scholar 

  24. Nurlinda, N., Rasyid, F. A. & Handayani, V. Spectrophotometric determination of total flavonoid content in Biancaea Sappan (Caesalpinia Sappan L.) leaves. IJPF 8 (3), 1–4. https://doi.org/10.33096/jffi.v8i3.712 (2021).

    Google Scholar 

  25. Shraim, A. M., Ahmed, T. A., Rahman, M. M. & Hijji, Y. M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932 (2021).

    Google Scholar 

  26. Choi, Y. H. & Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 26, 87–93. https://doi.org/10.1016/j.cofs.2019.04.003 (2019).

    Google Scholar 

  27. Zhang, M. et al. Advances of responsive deep eutectic solvents and application in extraction and separation of bioactive compounds. J. Sep. Sci. 46 (15). https://doi.org/10.1002/jssc.202300098 (2023).

  28. Baliyan, S. et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules 27 (4), 1326. https://doi.org/10.3390/molecules27041326 (2022).

    Google Scholar 

  29. Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature 181 (4617), 1199–1200. https://doi.org/10.1038/1811199a0 (1958).

    Google Scholar 

  30. Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 28 (1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5 (1995).

    Google Scholar 

  31. Sanou, A. et al. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. 2 https://doi.org/10.21203/rs.3.rs-1926596/v1 (2022).

  32. Jebli, Z. et al. Ultrasound-assisted extraction, optimisation using response surface methodology and HPLC-DAD phenolic compounds quantification from passiflora Edulis S. peels cultivated in Tunisia. Nat. Prod. Res. 1–9. https://doi.org/10.1080/14786419.2024.2380013 (2024).

  33. Alotaibi, M. A. et al. Exploring the dynamic world of ternary deep eutectic solvents: Synthesis, characterization, and key properties unveiled. Heliyon 10 (22), e40521. https://doi.org/10.1016/j.heliyon.2024.e40521 (2024).

    Google Scholar 

  34. Solcan, M. B. et al. Antimicrobial effectiveness of Ribes nigrum L. Leaf extracts prepared in natural deep eutectic solvents (NaDESs). Antibiotics 13 (12), 1118. https://doi.org/10.3390/antibiotics13121118 (2024).

    Google Scholar 

  35. Yoon, H. I. et al. Predicting models for plant metabolites based on PLSR, AdaBoost, XGBoost, and LightGBM algorithms using hyperspectral imaging of brassica juncea. Agriculture 13 (8), 1477. https://doi.org/10.3390/agriculture13081477 (2023).

    Google Scholar 

  36. Arif Ali, Z., Bibo Sallow, A., Tahir, A., Abduljabbar, H. H. & Almufti, Z. eXtreme gradient boosting algorithm with machine learning: a review. ACAD. J. NAWROZ UNIV. 12 (2), 320–334. https://doi.org/10.25007/ajnu.v12n2a1612 (2023).

    Google Scholar 

  37. Hakam, A. et al. Sonic log prediction based on extreme gradient boosting (XGBoost) machine learning algorithm by using well log data. BIO Web Conf. 89, 09003. https://doi.org/10.1051/bioconf/20248909003 (2024).

    Google Scholar 

  38. Saberi, A., Raissi, H., Zaboli, A. & Hashemzadeh, H. Optimizing saffron bioactive extraction with deep eutectic solvents. Sci. Rep. 15 (1). https://doi.org/10.1038/s41598-025-99695-1 (2025).

  39. Mohammed, E. A. et al. Effects of extraction solvents on the total phenolic Content, total flavonoid Content, and antioxidant activity in the aerial part of root vegetables. Agriculture 12 (11), 1820. https://doi.org/10.3390/agriculture12111820 (2022).

    Google Scholar 

  40. Kivelä, H. et al. Effect of water on a hydrophobic deep eutectic solvent. J. Phys. Chem. B. 126 (2), 513–527. https://doi.org/10.1021/acs.jpcb.1c08170 (2022).

    Google Scholar 

  41. Sanou, A. et al. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Sci. Rep. 13 (1). https://doi.org/10.1038/s41598-023-27434-5 (2023).

  42. Tsvetov, N., Paukshta, O., Fokina, N., Volodina, N. & Samarov, A. Application of natural deep eutectic solvents for extraction of bioactive components from Rhodiola rosea (L). Molecules 28 (2), 912. https://doi.org/10.3390/molecules28020912 (2023).

    Google Scholar 

  43. Kolarević, L., Horozić, E., Ademović, Z., Kundalić, B. Š. & Husejnagić, D. Influence of deep eutectic solvents (DESs) on antioxidant and antimicrobial activity of seed extracts of selected citrus species. IRJPAC Published Online Dec. 14, 120–128. https://doi.org/10.9734/irjpac/2020/v21i2330309 (2020).

    Google Scholar 

  44. Akbar, N. et al. Antimicrobial activity of novel deep eutectic solvents. Sci. Pharm. 91 (1), 9. https://doi.org/10.3390/scipharm91010009 (2023).

    Google Scholar 

  45. Ren, S., Mu, T. & Wu, W. Advances in deep eutectic solvents: new green solvents. Processes 11 (7), 1920. https://doi.org/10.3390/pr11071920 (2023).

    Google Scholar 

  46. Helmi, M., Khoshdouni Farahani, Z., Hemmati, A. & Ghaemi, A. Facile synthesis of Persian gum–graphene oxide composite as a novel adsorbent for CO2 capture: characterization and optimization. Sci. Rep. 14 (1). https://doi.org/10.1038/s41598-024-56070-w (2024).

  47. Coffie, G. H. & Cudjoe, S. K. F. Using extreme gradient boosting (XGBoost) machine learning to predict construction cost overruns. Int. J. Constr. Manage. 24 (16), 1742–1750. https://doi.org/10.1080/15623599.2023.2289754 (2023).

    Google Scholar 

  48. Munsif, M., Jabeen, F. & Rashid, M. An efficient hybrid classification model for heart disease prediction. 31 https://doi.org/10.21203/rs.3.rs-3863899/v1 (2024).

  49. Dalal, S., Onyema, E. M. & Malik, A. Hybrid XGBoost model with hyperparameter tuning for prediction of liver disease with better accuracy. World J. Gastroenterol. 28 (46), 6551–6563. https://doi.org/10.3748/wjg.v28.i46.6551 (2022).

    Google Scholar 

  50. M. L. Prediction of liver disease using machine learning. IJARSCT 234–241. https://doi.org/10.48175/ijarsct-5673 (2022).

  51. Aiwale, S., Mali, V., Patil, P., Patil, V. & Kamble, G. Liver disease prediction. IRJMETS 24 https://doi.org/10.56726/irjmets47243 (2023).

Download references