References
-
Ajaz, M., Rasool, W. & Mahmood, A. Comprehensive review of nanotechnology: innovations and multidisciplinary applications: comprehensive review of nanotechnology. Futuristic Biotechnol. 4 (1), 12–18 (2024).
-
Poonam, D., Honey, S. & Indu, J. Green and facile approach for the synthesis of ZnO/MgO nanocomposite using Azadirachta indica leaf extract: characterization and photocatalytic activity. Res. J. Chem. Environ. 27, 6 (2023).
-
Dwivedi, P., Jatrana, I., Satiya, H. & Lokhande, R. S. Understanding the synergistic effect of bimetallic Cu2O-ZnO nanocomposites for the antimicrobial activity and facile synthesis of phenyl xanthenedione: A comparative study. Res. J. Chem. Environ. 26 (4), 50–60. https://doi.org/10.25303/2604rjce5060 (2022).
-
Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P. & Lohita, D. Green synthesis of bismuth based nanoparticles and its applications – A review. Sustainable Chem. Pharm. 25, 100547. https://doi.org/10.1016/j.scp.2021.100547 (2022).
-
Paramesh, C. C. et al. Silver nanoparticles synthesized using saponin extract of Simarouba glauca oil seed meal as effective, recoverable and reusable catalyst for reduction of organic dyes. Results Surf. Interfaces. 3, 100005 (2021).
-
Elattar, K. M. et al. Phytogenic synthesis and characterization of silver Metallic/Bimetallic nanoparticles using beta vulgaris L. Extract and assessments of their potential biological activities. Appl. Sci. 13 (18), 10110. https://doi.org/10.3390/app131810110 (2023).
-
Mudike, R. et al. Copper zinc Tin sulfide and multi-walled carbon nanotubes nanocomposite for visible-light-driven photocatalytic applications. Mater. Res. Bull. 146, 111606 (2022).
-
Gengatharan, A., Dykes, G. A. & Choo, W. S. Betalains: natural plant pigments with potential application in functional foods. LWT-Food Sci. Technol. 64 (2), 645–649 (2015).
-
Wybraniec, S. Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC – MS/MS. J. Agric. Food Chem. 53 (9), 3483–3487 (2005).
-
Chaari, M. et al. Potentials of beetroot (Beta vulgaris L.) Peel extract for quality enhancement of refrigerated beef meat. Qual. Assur. Saf. Crops Foods. 15 (4), 99–115 (2023).
-
Tzanova, M. T. et al. Green solvents for extraction of natural food colorants from plants: selectivity and stability issues. Foods 13 (4), 605 (2024).
-
Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C. & Oyedeji, A. O. Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules 12 (5), 627 (2022).
-
Elattar, K. M. et al. Phytogenic synthesis and characterization of silver metallic/bimetallic nanoparticles using beta vulgaris L. extract and assessments of their potential biological activities. Appl. Sci. 13 (18), 10110 (2023).
-
Dwivedi, P. et al. Plant-mediated synthesis, characterization, and evaluation of a copper oxide/silicon dioxide nanocomposite by an antimicrobial study. Nanatechnol. Reviews. 13 (1), 20240105 (2024).
-
Costa, M. I., Sarmento-Ribeiro, A. B. & Gonçalves, A. C. Zinc: from biological functions to therapeutic potential. Int. J. Mol. Sci. 24 (5), 4822. https://doi.org/10.3390/ijms24054822 (2023).
-
Maret, W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 4 (1), 82–91 (2013).
-
Wessels, I., Maywald, M. & Rink, L. Zinc as a gatekeeper of immune function. Nutrients 9 (12), 1286 (2017).
-
Haase, H. & Rink, L. Zinc signals and immune function. Biofactors 40 (1), 27–40 (2014).
-
Kim, B. & Lee, W. W. Regulatory role of zinc in immune cell signaling. Mol. Cells. 44 (5), 335–341. https://doi.org/10.14348/molcells.2021.0061 (2021).
-
Prasad, A. S. Zinc in human health: effect of zinc on immune cells. Mol. Med. 14 (5–6), 353–357 (2008).
-
Lebaka, V. R., Ravi, P., Reddy, M. C., Thummala, C. & Mandal, T. K. Zinc oxide nanoparticles in modern science and technology: multifunctional roles in Healthcare, environmental Remediation, and industry. Nanomaterials (Basel Switzerland). 15 (10), 754. https://doi.org/10.3390/nano15100754 (2025).
-
Jayakodi, S. et al. Controlling pore size during the synthesis of hydroxyapatite nanoparticles using CTAB by the sol–gel hydrothermal method and their biological activities. Nanatechnol. Reviews. 13 (1), 20240123 (2024).
-
AlSalhi, M. S. et al. Therapeutic potential assessment of green synthesized zinc oxide nanoparticles derived from fennel seeds extract. Int. J. Nanomed. 15, 8045–8057. https://doi.org/10.2147/IJN.S272734 (2020).
-
Riss, T. L. et al. Cell viability assays. In (eds Markossian, S., Grossman, A., Baskir, H., Arkin, M., Auld, D. & Austin, C.) Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. (2004).
-
Mehdipour, A. et al. Green synthesis of zinc nanoparticles by hydroalcoholic extract of lavender (Lavandula Stoechas L.), characterization, and cytotoxic effects on human breast and colon cancer. Sci. Rep. 14 (1), 29543 (2024).
-
Salari, Z. et al. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. J. Trace Elem. Med Biol. 39, 116–123. https://doi.org/10.1016/j.jtemb.2016.09.001 (2017).
-
Singh, J., Kaur, S., Kaur, G., Basu, S. & Rawat, M. Biogenic ZnO nps: A study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green. Process. Synthesis. https://doi.org/10.1515/gps-2018-0084 (2018).
-
Sharma, S., Singh, A. K., Singh, S. P. & Singh, R. K. Synthesis and characterization of ZnO nanoparticles prepared by green routes: controlling morphologies by maintaining pH. Phys. Scr. 99, 1059b1059. https://doi.org/10.1088/1402-4896/ad7ae2 (2024).
-
Sharma, S. S., Palaty, S. & John, A. K. Band gap modified zinc oxide nanoparticles: an efficient visible light active catalyst for wastewater treatment. Int. J. Environ. Sci. Technol. 18 (9), 2619–2632. https://doi.org/10.1007/s13762-020-02976-7 (2021).
-
Stroyuk, O. L., Dzhagan, V. M., Shvalagin, V. V. & Kuchmiy, S. Y. Size-Dependent optical properties of colloidal ZnO nanoparticles charged by photoexcitation. J. Phys. Chem. C. 114 (1), 220–225. https://doi.org/10.1021/jp908879h (2010).
-
Thyr, J., Montero, J., Österlund, L. & Edvinsson, T. Energy alignment of Quantum-Confined ZnO particles with copper oxides for heterojunctions with improved photocatalytic performance. ACS Nanosci. Au. 2 (2), 128–139. https://doi.org/10.1021/acsnanoscienceau.1c00040 (2022).
-
Vinay, S. P., Nagaraju, G., Chandrappa, C. & Chandrasekhar, N. Novel Gomutra (cow urine) mediated synthesis of silver oxide nanoparticles and their enhanced photocatalytic, photoluminescence and antibacterial studies. J. Science: Adv. Mater. Devices. 4 (3), 392–399 (2019).
-
Bisht, G. & Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine 3, 9. https://doi.org/10.5772/63437 (2016).
-
Dwivedi, P., Satiya, H. & Sharma, S. K. Novel green approach for the synthesis of Co3O4/ZnO nanocomposite, characterization and antimicrobial activity. Mater. Today: Proc. 79, 80–86 (2023).
-
Ouf, M. S., Duab, M. E., Abdel-Meguid, D. I., El-Sharouny, E. E. & Soliman, N. A. Biogenic zinc nanoparticles: green approach to synthesis, characterization, and antimicrobial applications. Microb. Cell. Fact. 24 (1), 168 (2025).
-
Shalini, K. et al. Hydrothermal route alignment of Ag/rGO@ Curcumin nanocomposite: photocatalyst degrading action and antibacterial effectiveness. Journal Indian Chem. Society, 102183. (2025).
-
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. The highscore suite. Powder Diffr. 29 (S2), S13–S18. https://doi.org/10.1017/S0885715614000840 (2014).
-
Al-Kordy, H. M. H., Sabry, S. A. & Mabrouk, M. E. M. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7. Sci. Rep. 11, 10924. https://doi.org/10.1038/s41598-021-90408-y (2021).
-
Dwivedi, P. et al. Eco-Friendly CuO/Fe3O4 nanocomposite synthesis, characterization, and cytotoxicity study. Heliyon, 10(6). (2024).
-
Jayakodi, S. & Shanmugam, V. K. Statistical optimization of copper oxide nanoparticles using response surface methodology and Box–Behnken design towards in vitro and in vivo toxicity assessment. Biointerface Res. Appl. Chem. 11 (3), 10027–10039 (2021).
-
El Faroudi, L. et al. Facile and sustainable synthesis of ZnO nanoparticles: effect of gelling agents on ZnO shapes and their photocatalytic performance. ACS Omega. 8 (28), 24952–24963. https://doi.org/10.1021/acsomega.3c01491 (2023).
-
M, A. M., Ashwin, D. U., Yardily, B. M., Dennison, M. S. & A., & Microwave-assisted green synthesized ZnO nanoparticles: an experimental and computational investigation. Discover Appl. Sci. 7 (3), 177. https://doi.org/10.1007/s42452-025-06563-8 (2025).
-
Jatrana, I., Satiya, H. & Dwivedi Novel green synthesis of ZnO/SiO2 nanocomposite: characterization and biocidal activity. Mater. Today: Proc. 79, 148–154 (2023).
-
Mohammed, N. & Al Khazraji, A. Synthesis and study of zinc oxide nanoparticles and their nanocomposites. J. Pharm. Negat. Results. 13, 790–797. https://doi.org/10.47750/pnr.2022.13.04.105 (2022).
-
Pasieczna-Patkowska, S., Cichy, M. & Flieger, J. Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 30 (3), 684. https://doi.org/10.3390/molecules30030684 (2025).
-
Gomez-Zavaglia, A., Cassani, L., Hebert, E. M. & Gerbino, E. Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Res. Int. 155, 111097 (2022).
-
Al-Harbi, H. F. et al. Green synthesis of zinc oxide nanoparticles: physicochemical Characterization, photocatalytic Performance, and evaluation of their impact on seed germination parameters in crops. Catalysts 15 (10), 924. https://doi.org/10.3390/catal15100924 (2025).
-
Ogunyemi, S. O. et al. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 47 (1), 341–352. https://doi.org/10.1080/21691401.2018.1557671 (2019).
-
Mustapha, S. et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. NanoSci. NanoTechnol. 10, 045013. https://doi.org/10.1088/2043-6254/ab52f7 (2019).
-
Shaik, K., Cole, S. & K, V., & Comparative study of crystallite size from XRD and TEM results for pure and V2O5 doped CdO-FePO4 composite nanopowders. Phys. Chem. Res. 11 (2), 241–251. https://doi.org/10.22036/pcr.2022.337333.2077 (2023).
-
Vinay, S. P., Udayabhanu, Nagaraju, G., Chandrappa, C. & Chandrasekhar, N. A novel, green, rapid, nonchemical route hydrothermal assisted biosynthesis of ag nanomaterial by Blushwood berry extract and evaluation of its diverse applications. Appl. Nanosci. 10 (8), 3341–3351 (2020).
-
Paramesh, C. C. et al. Silver nanoparticles anchored TiO2 nanotubes prepared using saponin extract as heterogeneous and recyclable catalysts for reduction of dyes. Ceram. Int. 47 (10), 14750–14759 (2021).
-
Porous covalent organic frameworks in photocatalytic ROS-mediated processes. Energy Adv., 3(4), 712–740, https://doi.org/10.1039/d4ya00082j. (2024).
-
Hassaan, M. A. et al. Principles of photocatalysts and their different applications: A review. Top. Curr. Chem. 381 (6), 31. https://doi.org/10.1007/s41061-023-00444-7 (2023).
-
Dwivedi, P. et al. Photoremediation of methylene blue by biosynthesized ZnO/Fe3O4 nanocomposites using callistemon viminalis leaves aqueous extract: a comparative study. Nanatechnol. Reviews. 10 (1), 1912–1925 (2021).
-
Supin, K. K., Vasundhara, M. & PM, P. N., & Enhanced photocatalytic activity in ZnO nanoparticles developed using novel lepidagathis ananthapuramensis leaf extract. RSC Adv. 13 (3), 1497–1515 (2023).
-
Kahsay, M. H., Tadesse, A., RamaDevi, D., Belachew, N. & Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. 9 (63), 36967–36981 (2019).
-
Kumar, M. S., Suprajaa, N. & David, E. Photocatalytic activity of methylene blue using zinc nanoparticles synthesized from Gymnema sylvestre and antimicrobial assay. Adv. Bioequival Bioavailab. 2, 161–167 (2019).
-
Ghasemian Yadegari, J. et al. Antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized zinc nanoparticles alone and in combined with glucantime against Leishmania major infection. Biomed. Pharmacother. 164, 114984. https://doi.org/10.1016/j.biopha.2023.114984 (2023).
-
Zhang, C. et al. Biosynthesis of zinc nanoparticles using allium saralicum RM Fritsch leaf extract; chemical characterization and analysis of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties. Appl. Organomet. Chem. 36 (12), e5564 (2022).
-
Rajeshkumar, S., Jayakodi, S., Tharani, M., Alharbi, N. S. & Thiruvengadam, M. Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens. Microb. Pathog. 189, 106602 (2024).
-
Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet (London England). 387 (10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 (2016).
-
Jayakodi, S. et al. Preparation of novel nanoformulation to enhance efficacy in the treatment of cardiovascular disease. Biomimetics 7 (4), 189 (2022).
-
Halligudra, G., K, V., Rangappa, M. N. R., Shivaramu, P. D. & D., & Antibacterial and antiproliferative effect of ZnO nanoparticles prepared using Origanum Marjorana plant and garcinia indica fruit extracts. J. Inorg. Organomet. Polym Mater. 35 (2), 1073–1083 (2025).
-
Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7 (3), 219–242. https://doi.org/10.1007/s40820-015-0040-x (2015).
-
Krishnamoorthy, R. et al. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to Beta-Lactam antibiotics. Molecules (Basel Switzerland). 27 (8), 2489. https://doi.org/10.3390/molecules27082489 (2022).
-
Majeed, H., Iftikhar, T., Nadeem, A., Altaf Nazir, M. & M., & Green synthesis of Eucalyptus globulus zinc nanoparticles and its use in antimicrobial insect repellent paint formulation in bulk industrial production. Heliyon 10 (2), e24467. https://doi.org/10.1016/j.heliyon.2024.e24467 (2024).
