Eco-friendly synthesis of star-shaped Zn nanoparticles using Beta vulgaris peel extract and evaluation of their antibacterial, photocatalytic, and cytotoxic activities

eco-friendly-synthesis-of-star-shaped-zn-nanoparticles-using-beta-vulgaris-peel-extract-and-evaluation-of-their-antibacterial,-photocatalytic,-and-cytotoxic-activities
Eco-friendly synthesis of star-shaped Zn nanoparticles using Beta vulgaris peel extract and evaluation of their antibacterial, photocatalytic, and cytotoxic activities

References

  1. Ajaz, M., Rasool, W. & Mahmood, A. Comprehensive review of nanotechnology: innovations and multidisciplinary applications: comprehensive review of nanotechnology. Futuristic Biotechnol. 4 (1), 12–18 (2024).

    Google Scholar 

  2. Poonam, D., Honey, S. & Indu, J. Green and facile approach for the synthesis of ZnO/MgO nanocomposite using Azadirachta indica leaf extract: characterization and photocatalytic activity. Res. J. Chem. Environ. 27, 6 (2023).

    Google Scholar 

  3. Dwivedi, P., Jatrana, I., Satiya, H. & Lokhande, R. S. Understanding the synergistic effect of bimetallic Cu2O-ZnO nanocomposites for the antimicrobial activity and facile synthesis of phenyl xanthenedione: A comparative study. Res. J. Chem. Environ. 26 (4), 50–60. https://doi.org/10.25303/2604rjce5060 (2022).

    Google Scholar 

  4. Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P. & Lohita, D. Green synthesis of bismuth based nanoparticles and its applications – A review. Sustainable Chem. Pharm. 25, 100547. https://doi.org/10.1016/j.scp.2021.100547 (2022).

    Google Scholar 

  5. Paramesh, C. C. et al. Silver nanoparticles synthesized using saponin extract of Simarouba glauca oil seed meal as effective, recoverable and reusable catalyst for reduction of organic dyes. Results Surf. Interfaces. 3, 100005 (2021).

    Google Scholar 

  6. Elattar, K. M. et al. Phytogenic synthesis and characterization of silver Metallic/Bimetallic nanoparticles using beta vulgaris L. Extract and assessments of their potential biological activities. Appl. Sci. 13 (18), 10110. https://doi.org/10.3390/app131810110 (2023).

    Google Scholar 

  7. Mudike, R. et al. Copper zinc Tin sulfide and multi-walled carbon nanotubes nanocomposite for visible-light-driven photocatalytic applications. Mater. Res. Bull. 146, 111606 (2022).

    Google Scholar 

  8. Gengatharan, A., Dykes, G. A. & Choo, W. S. Betalains: natural plant pigments with potential application in functional foods. LWT-Food Sci. Technol. 64 (2), 645–649 (2015).

    Google Scholar 

  9. Wybraniec, S. Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC – MS/MS. J. Agric. Food Chem. 53 (9), 3483–3487 (2005).

    Google Scholar 

  10. Chaari, M. et al. Potentials of beetroot (Beta vulgaris L.) Peel extract for quality enhancement of refrigerated beef meat. Qual. Assur. Saf. Crops Foods. 15 (4), 99–115 (2023).

    Google Scholar 

  11. Tzanova, M. T. et al. Green solvents for extraction of natural food colorants from plants: selectivity and stability issues. Foods 13 (4), 605 (2024).

    Google Scholar 

  12. Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C. & Oyedeji, A. O. Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules 12 (5), 627 (2022).

    Google Scholar 

  13. Elattar, K. M. et al. Phytogenic synthesis and characterization of silver metallic/bimetallic nanoparticles using beta vulgaris L. extract and assessments of their potential biological activities. Appl. Sci. 13 (18), 10110 (2023).

    Google Scholar 

  14. Dwivedi, P. et al. Plant-mediated synthesis, characterization, and evaluation of a copper oxide/silicon dioxide nanocomposite by an antimicrobial study. Nanatechnol. Reviews. 13 (1), 20240105 (2024).

    Google Scholar 

  15. Costa, M. I., Sarmento-Ribeiro, A. B. & Gonçalves, A. C. Zinc: from biological functions to therapeutic potential. Int. J. Mol. Sci. 24 (5), 4822. https://doi.org/10.3390/ijms24054822 (2023).

    Google Scholar 

  16. Maret, W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 4 (1), 82–91 (2013).

    Google Scholar 

  17. Wessels, I., Maywald, M. & Rink, L. Zinc as a gatekeeper of immune function. Nutrients 9 (12), 1286 (2017).

    Google Scholar 

  18. Haase, H. & Rink, L. Zinc signals and immune function. Biofactors 40 (1), 27–40 (2014).

    Google Scholar 

  19. Kim, B. & Lee, W. W. Regulatory role of zinc in immune cell signaling. Mol. Cells. 44 (5), 335–341. https://doi.org/10.14348/molcells.2021.0061 (2021).

    Google Scholar 

  20. Prasad, A. S. Zinc in human health: effect of zinc on immune cells. Mol. Med. 14 (5–6), 353–357 (2008).

    Google Scholar 

  21. Lebaka, V. R., Ravi, P., Reddy, M. C., Thummala, C. & Mandal, T. K. Zinc oxide nanoparticles in modern science and technology: multifunctional roles in Healthcare, environmental Remediation, and industry. Nanomaterials (Basel Switzerland). 15 (10), 754. https://doi.org/10.3390/nano15100754 (2025).

    Google Scholar 

  22. Jayakodi, S. et al. Controlling pore size during the synthesis of hydroxyapatite nanoparticles using CTAB by the sol–gel hydrothermal method and their biological activities. Nanatechnol. Reviews. 13 (1), 20240123 (2024).

    Google Scholar 

  23. AlSalhi, M. S. et al. Therapeutic potential assessment of green synthesized zinc oxide nanoparticles derived from fennel seeds extract. Int. J. Nanomed. 15, 8045–8057. https://doi.org/10.2147/IJN.S272734 (2020).

    Google Scholar 

  24. Riss, T. L. et al. Cell viability assays. In (eds Markossian, S., Grossman, A., Baskir, H., Arkin, M., Auld, D. & Austin, C.) Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. (2004).

    Google Scholar 

  25. Mehdipour, A. et al. Green synthesis of zinc nanoparticles by hydroalcoholic extract of lavender (Lavandula Stoechas L.), characterization, and cytotoxic effects on human breast and colon cancer. Sci. Rep. 14 (1), 29543 (2024).

    Google Scholar 

  26. Salari, Z. et al. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. J. Trace Elem. Med Biol. 39, 116–123. https://doi.org/10.1016/j.jtemb.2016.09.001 (2017).

    Google Scholar 

  27. Singh, J., Kaur, S., Kaur, G., Basu, S. & Rawat, M. Biogenic ZnO nps: A study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green. Process. Synthesis. https://doi.org/10.1515/gps-2018-0084 (2018).

    Google Scholar 

  28. Sharma, S., Singh, A. K., Singh, S. P. & Singh, R. K. Synthesis and characterization of ZnO nanoparticles prepared by green routes: controlling morphologies by maintaining pH. Phys. Scr. 99, 1059b1059. https://doi.org/10.1088/1402-4896/ad7ae2 (2024).

    Google Scholar 

  29. Sharma, S. S., Palaty, S. & John, A. K. Band gap modified zinc oxide nanoparticles: an efficient visible light active catalyst for wastewater treatment. Int. J. Environ. Sci. Technol. 18 (9), 2619–2632. https://doi.org/10.1007/s13762-020-02976-7 (2021).

    Google Scholar 

  30. Stroyuk, O. L., Dzhagan, V. M., Shvalagin, V. V. & Kuchmiy, S. Y. Size-Dependent optical properties of colloidal ZnO nanoparticles charged by photoexcitation. J. Phys. Chem. C. 114 (1), 220–225. https://doi.org/10.1021/jp908879h (2010).

    Google Scholar 

  31. Thyr, J., Montero, J., Österlund, L. & Edvinsson, T. Energy alignment of Quantum-Confined ZnO particles with copper oxides for heterojunctions with improved photocatalytic performance. ACS Nanosci. Au. 2 (2), 128–139. https://doi.org/10.1021/acsnanoscienceau.1c00040 (2022).

    Google Scholar 

  32. Vinay, S. P., Nagaraju, G., Chandrappa, C. & Chandrasekhar, N. Novel Gomutra (cow urine) mediated synthesis of silver oxide nanoparticles and their enhanced photocatalytic, photoluminescence and antibacterial studies. J. Science: Adv. Mater. Devices. 4 (3), 392–399 (2019).

    Google Scholar 

  33. Bisht, G. & Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine 3, 9. https://doi.org/10.5772/63437 (2016).

    Google Scholar 

  34. Dwivedi, P., Satiya, H. & Sharma, S. K. Novel green approach for the synthesis of Co3O4/ZnO nanocomposite, characterization and antimicrobial activity. Mater. Today: Proc. 79, 80–86 (2023).

    Google Scholar 

  35. Ouf, M. S., Duab, M. E., Abdel-Meguid, D. I., El-Sharouny, E. E. & Soliman, N. A. Biogenic zinc nanoparticles: green approach to synthesis, characterization, and antimicrobial applications. Microb. Cell. Fact. 24 (1), 168 (2025).

    Google Scholar 

  36. Shalini, K. et al. Hydrothermal route alignment of Ag/rGO@ Curcumin nanocomposite: photocatalyst degrading action and antibacterial effectiveness. Journal Indian Chem. Society, 102183. (2025).

  37. Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. The highscore suite. Powder Diffr. 29 (S2), S13–S18. https://doi.org/10.1017/S0885715614000840 (2014).

    Google Scholar 

  38. Al-Kordy, H. M. H., Sabry, S. A. & Mabrouk, M. E. M. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7. Sci. Rep. 11, 10924. https://doi.org/10.1038/s41598-021-90408-y (2021).

    Google Scholar 

  39. Dwivedi, P. et al. Eco-Friendly CuO/Fe3O4 nanocomposite synthesis, characterization, and cytotoxicity study. Heliyon, 10(6). (2024).

  40. Jayakodi, S. & Shanmugam, V. K. Statistical optimization of copper oxide nanoparticles using response surface methodology and Box–Behnken design towards in vitro and in vivo toxicity assessment. Biointerface Res. Appl. Chem. 11 (3), 10027–10039 (2021).

    Google Scholar 

  41. El Faroudi, L. et al. Facile and sustainable synthesis of ZnO nanoparticles: effect of gelling agents on ZnO shapes and their photocatalytic performance. ACS Omega. 8 (28), 24952–24963. https://doi.org/10.1021/acsomega.3c01491 (2023).

    Google Scholar 

  42. M, A. M., Ashwin, D. U., Yardily, B. M., Dennison, M. S. & A., & Microwave-assisted green synthesized ZnO nanoparticles: an experimental and computational investigation. Discover Appl. Sci. 7 (3), 177. https://doi.org/10.1007/s42452-025-06563-8 (2025).

    Google Scholar 

  43. Jatrana, I., Satiya, H. & Dwivedi Novel green synthesis of ZnO/SiO2 nanocomposite: characterization and biocidal activity. Mater. Today: Proc. 79, 148–154 (2023).

    Google Scholar 

  44. Mohammed, N. & Al Khazraji, A. Synthesis and study of zinc oxide nanoparticles and their nanocomposites. J. Pharm. Negat. Results. 13, 790–797. https://doi.org/10.47750/pnr.2022.13.04.105 (2022).

    Google Scholar 

  45. Pasieczna-Patkowska, S., Cichy, M. & Flieger, J. Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 30 (3), 684. https://doi.org/10.3390/molecules30030684 (2025).

    Google Scholar 

  46. Gomez-Zavaglia, A., Cassani, L., Hebert, E. M. & Gerbino, E. Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Res. Int. 155, 111097 (2022).

    Google Scholar 

  47. Al-Harbi, H. F. et al. Green synthesis of zinc oxide nanoparticles: physicochemical Characterization, photocatalytic Performance, and evaluation of their impact on seed germination parameters in crops. Catalysts 15 (10), 924. https://doi.org/10.3390/catal15100924 (2025).

    Google Scholar 

  48. Ogunyemi, S. O. et al. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 47 (1), 341–352. https://doi.org/10.1080/21691401.2018.1557671 (2019).

    Google Scholar 

  49. Mustapha, S. et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. NanoSci. NanoTechnol. 10, 045013. https://doi.org/10.1088/2043-6254/ab52f7 (2019).

    Google Scholar 

  50. Shaik, K., Cole, S. & K, V., & Comparative study of crystallite size from XRD and TEM results for pure and V2O5 doped CdO-FePO4 composite nanopowders. Phys. Chem. Res. 11 (2), 241–251. https://doi.org/10.22036/pcr.2022.337333.2077 (2023).

    Google Scholar 

  51. Vinay, S. P., Udayabhanu, Nagaraju, G., Chandrappa, C. & Chandrasekhar, N. A novel, green, rapid, nonchemical route hydrothermal assisted biosynthesis of ag nanomaterial by Blushwood berry extract and evaluation of its diverse applications. Appl. Nanosci. 10 (8), 3341–3351 (2020).

    Google Scholar 

  52. Paramesh, C. C. et al. Silver nanoparticles anchored TiO2 nanotubes prepared using saponin extract as heterogeneous and recyclable catalysts for reduction of dyes. Ceram. Int. 47 (10), 14750–14759 (2021).

    Google Scholar 

  53. Porous covalent organic frameworks in photocatalytic ROS-mediated processes. Energy Adv., 3(4), 712–740, https://doi.org/10.1039/d4ya00082j. (2024).

    Google Scholar 

  54. Hassaan, M. A. et al. Principles of photocatalysts and their different applications: A review. Top. Curr. Chem. 381 (6), 31. https://doi.org/10.1007/s41061-023-00444-7 (2023).

    Google Scholar 

  55. Dwivedi, P. et al. Photoremediation of methylene blue by biosynthesized ZnO/Fe3O4 nanocomposites using callistemon viminalis leaves aqueous extract: a comparative study. Nanatechnol. Reviews. 10 (1), 1912–1925 (2021).

    Google Scholar 

  56. Supin, K. K., Vasundhara, M. & PM, P. N., & Enhanced photocatalytic activity in ZnO nanoparticles developed using novel lepidagathis ananthapuramensis leaf extract. RSC Adv. 13 (3), 1497–1515 (2023).

    Google Scholar 

  57. Kahsay, M. H., Tadesse, A., RamaDevi, D., Belachew, N. & Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. 9 (63), 36967–36981 (2019).

    Google Scholar 

  58. Kumar, M. S., Suprajaa, N. & David, E. Photocatalytic activity of methylene blue using zinc nanoparticles synthesized from Gymnema sylvestre and antimicrobial assay. Adv. Bioequival Bioavailab. 2, 161–167 (2019).

    Google Scholar 

  59. Ghasemian Yadegari, J. et al. Antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized zinc nanoparticles alone and in combined with glucantime against Leishmania major infection. Biomed. Pharmacother. 164, 114984. https://doi.org/10.1016/j.biopha.2023.114984 (2023).

    Google Scholar 

  60. Zhang, C. et al. Biosynthesis of zinc nanoparticles using allium saralicum RM Fritsch leaf extract; chemical characterization and analysis of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties. Appl. Organomet. Chem. 36 (12), e5564 (2022).

    Google Scholar 

  61. Rajeshkumar, S., Jayakodi, S., Tharani, M., Alharbi, N. S. & Thiruvengadam, M. Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens. Microb. Pathog. 189, 106602 (2024).

    Google Scholar 

  62. Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet (London England). 387 (10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 (2016).

    Google Scholar 

  63. Jayakodi, S. et al. Preparation of novel nanoformulation to enhance efficacy in the treatment of cardiovascular disease. Biomimetics 7 (4), 189 (2022).

    Google Scholar 

  64. Halligudra, G., K, V., Rangappa, M. N. R., Shivaramu, P. D. & D., & Antibacterial and antiproliferative effect of ZnO nanoparticles prepared using Origanum Marjorana plant and garcinia indica fruit extracts. J. Inorg. Organomet. Polym Mater. 35 (2), 1073–1083 (2025).

    Google Scholar 

  65. Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7 (3), 219–242. https://doi.org/10.1007/s40820-015-0040-x (2015).

    Google Scholar 

  66. Krishnamoorthy, R. et al. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to Beta-Lactam antibiotics. Molecules (Basel Switzerland). 27 (8), 2489. https://doi.org/10.3390/molecules27082489 (2022).

    Google Scholar 

  67. Majeed, H., Iftikhar, T., Nadeem, A., Altaf Nazir, M. & M., & Green synthesis of Eucalyptus globulus zinc nanoparticles and its use in antimicrobial insect repellent paint formulation in bulk industrial production. Heliyon 10 (2), e24467. https://doi.org/10.1016/j.heliyon.2024.e24467 (2024).

    Google Scholar 

Download references