Editing DNA methylation in vivo

editing-dna-methylation-in-vivo
Editing DNA methylation in vivo

Data availability

The RNA-seq, ChIP-seq, and whole genome bisulfilte genome sequencing data generated as part of this study have been deposited in the Gene Expression Omnibus database under GSE280072, GSE280073, GSE280074. All other data can be found within the paper, supplementary materials, and source data. Source data are provided with this paper.

References

  1. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Google Scholar 

  2. Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Google Scholar 

  3. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Google Scholar 

  4. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Google Scholar 

  5. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    Google Scholar 

  6. McCutcheon, S. R., Rohm, D., Iglesias, N. & Gersbach, C. A. Epigenome editing technologies for discovery and medicine. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02320-1 (2024).

    Google Scholar 

  7. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Google Scholar 

  8. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    Google Scholar 

  9. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    Google Scholar 

  10. Choudhury, S. R. et al. Optogenetic regulation of site-specific subtelomeric DNA methylation. Oncotarget 7, 50380–50391 (2016).

    Google Scholar 

  11. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e217 (2016).

    Google Scholar 

  12. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Google Scholar 

  13. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Google Scholar 

  14. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232 e214 (2016).

    Google Scholar 

  15. Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992.e976 (2018).

    Google Scholar 

  16. Qian, J. et al. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666 (2023).

    Google Scholar 

  17. Halmai, J. et al. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res. 48, 2372–2387 (2020).

    Google Scholar 

  18. Liu, X. S. & Jaenisch, R. Editing the epigenome to tackle brain disorders. Trends Neurosci. 42, 861–870 (2019).

    Google Scholar 

  19. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Google Scholar 

  20. Sabatine, M. S. PCSK9 inhibitors: clinical evidence and implementation. Nat. Rev. Cardiol. 16, 155–165 (2019).

    Google Scholar 

  21. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Google Scholar 

  22. Sandweiss, A. J., Brandt, V. L. & Zoghbi, H. Y. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol. 19, 689–698 (2020).

    Google Scholar 

  23. Grimm, N. B. & Lee, J. T. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends Genet. https://doi.org/10.1016/j.tig.2022.01.007 (2022).

    Google Scholar 

  24. Sripathy, S. et al. Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-beta superfamily as a regulator of XIST expression. Proc. Natl. Acad. Sci. USA 114, 1619–1624 (2017).

    Google Scholar 

  25. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet 27, 322–326 (2001).

    Google Scholar 

  26. Starr, D. A. KASH and SUN proteins. Curr. Biol. 21, R414–R415 (2011).

    Google Scholar 

  27. Yazdani, M. et al. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 30, 2128–2139 (2012).

    Google Scholar 

  28. Wang, I. T., Reyes, A. R. & Zhou, Z. Neuronal morphology in MeCP2 mouse models is intrinsically variable and depends on age, cell type, and Mecp2 mutation. Neurobiol. Dis. 58, 3–12 (2013).

    Google Scholar 

  29. Li, Y. et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13, 446–458 (2013).

    Google Scholar 

  30. Farrow, L. F., Andronicos, N. M., McDonald, P. G. & Hamlin, A. S. Quantitative determination of neuronal size and density using flow cytometry. J. Neurosci. Methods 352, 109081 (2021).

    Google Scholar 

  31. Mattei, A. L., Bailly, N. & Meissner, A. DNA methylation: a historical perspective. Trends Genet. https://doi.org/10.1016/j.tig.2022.03.010 (2022).

    Google Scholar 

  32. Cappelluti, M. A. et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 627, 416–423 (2024).

    Google Scholar 

  33. Neumann, E. N. et al. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 384, ado7082 (2024).

    Google Scholar 

  34. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Google Scholar 

  35. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Google Scholar 

  36. Wang, L. et al. Systematic evaluation of AAV vectors for liver directed gene transfer in murine models. Mol. Ther. 18, 118–125 (2010).

    Google Scholar 

  37. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Google Scholar 

  38. Krzisch, M. A. et al. Fragile X syndrome patient-derived neurons developing in the mouse brain show FMR1-dependent phenotypes. Biol. Psychiatry 93, 71–81 (2023).

    Google Scholar 

  39. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Google Scholar 

  40. Oliveira, A. M. DNA methylation: a permissive mark in memory formation and maintenance. Learn. Mem. 23, 587–593 (2016).

    Google Scholar 

  41. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Google Scholar 

  42. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  43. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Google Scholar 

  44. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  45. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Google Scholar 

  46. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank M. Kisser at Columbia Stem Cell Initiative for FACS sorting and X. Xu in Dr. Chao Lu’s lab at Columbia University Medical Center for helping with sonication in ChIP-seq. We thank C. Chuan at the Flow Cytometry Core and T. Swayne at the Confocal and Specialized Microscopy Core at the Herbert Irving Cancer Center for technical assistance. This study was supported by grants from NIH-R01MH134519 grant awarded to X.S.L., Rett Syndrome Research Trust grant PG013909 awarded to X.S.L., and NIH-F30HD115371 fellowship awarded to R.P.

Author information

Authors and Affiliations

  1. Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, Columbia University, New York City, NY, USA

    Richard Pan, Jingwei Ren, Xinyue Chen, Luis F. Flores, Rachel V. L. Gonzalez, Andre Antonio Adonnino & X. Shawn Liu

  2. Fred Hutchinson Cancer Center, Seattle, WA, USA

    Brandon Lofts

  3. Department of Neurology, New York University Langone Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, USA

    Jennifer Waldo, Julian Halmai & Kyle Fink

  4. Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA

    Orrin Devinsky

Authors

  1. Richard Pan
  2. Jingwei Ren
  3. Xinyue Chen
  4. Luis F. Flores
  5. Rachel V. L. Gonzalez
  6. Andre Antonio Adonnino
  7. Brandon Lofts
  8. Jennifer Waldo
  9. Julian Halmai
  10. Orrin Devinsky
  11. Kyle Fink
  12. X. Shawn Liu

Contributions

R.P. and X.S.L. conceived the idea for this project. R.P. and X.S.L. designed the experiments. R.P., J.R., X.C., L.F.F., R.V.L.G., A.A.A., and X.S.L. performed the experiments. B.L. cultured and provided the Mecp2 reporter cells. J.W. and J.H. packaged AAV9 virus. R.P., O.D., K.F., and X.S.L. interpreted the data, and wrote the manuscript with input from all the other authors.

Corresponding author

Correspondence to X. Shawn Liu.

Ethics declarations

Competing interests

O.D. has equity in Epitor Therapeutics, Regel Therapeutics, Ajna Biosciences, Blackrock Neurotech, ConnectRN, Tevard Therapeutics, and PhiFund Ventures. K.F. is a SAB member for Epitor Therapeutics. X.S.L. is a co-founder of Epitor Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Takuro Horii and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Ren, J., Chen, X. et al. Editing DNA methylation in vivo. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67222-5