Effect of carbohydrate substrates on growth and enterotoxin gene expression in Bacillus cereus (pacificus)

effect-of-carbohydrate-substrates-on-growth-and-enterotoxin-gene-expression-in-bacillus-cereus-(pacificus)
Effect of carbohydrate substrates on growth and enterotoxin gene expression in Bacillus cereus (pacificus)

References

  1. Griffiths, M. W. & Schraft, H. Bacillus cereus food poisoning. In Foodborne Diseases 395–405 (Elsevier, 2017). https://doi.org/10.1016/B978-0-12-385007-2.00020-6.

  2. Marrollo, R. Bacillus cereus food-borne disease. In The Diverse Faces of Bacillus cereus 61–72 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801474-5.00005-0.

  3. Andersen Borge, G. I., Skeie, M., Sørhaug, T., Langsrud, T. & Granum, P. E. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 69, 237–246 (2001).

    Google Scholar 

  4. Liao, S. L. & Tsai, M. H. Bacillus cereus bacteremia in a preterm infant caused by consumption of contaminated breastmilk. Pediatr. Neonatol. 62, 337–338 (2021).

    Google Scholar 

  5. Rasko, D. A. et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988 (2004).

    Google Scholar 

  6. Rodrigo, D., Rosell, C. M. & Martinez, A. Risk of Bacillus cereus in relation to rice and derivatives. Foods 10, 302 (2021).

    Google Scholar 

  7. Stenfors Arnesen, L. P., Fagerlund, A. & Granum, P. E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606 (2008).

    Google Scholar 

  8. Pivrncova, E., Bohm, J., Barton, V., Klanova, J. & Linhartova, P. B. Viable bacterial communities in freshly pumped human milk and their changes during cold storage conditions. https://doi.org/10.21203/rs.3.rs-4629897/v1 (2024).

  9. Cormontagne, D. et al. Bacillus cereus induces severe infections in preterm neonates: implication at the hospital and human milk bank level. Toxins 13, 123 (2021).

    Google Scholar 

  10. Hilliard, N. J., Schelonka, R. L. & Waites, K. B. Bacillus cereus bacteremia in a preterm neonate. J. Clin. Microbiol. 41, 3441–3444 (2003).

    Google Scholar 

  11. Zhang, W., Ma, C., Hu, L., Wang, L. & Xu, F. Late-onset sepsis in newborns caused by Bacillus cereus: a case report and literature review. Ann. Clin. Microbiol. Antimicrob. 23, 66 (2024).

    Google Scholar 

  12. Jessberger, N., Dietrich, R., Granum, P. E. & Märtlbauer, E. The Bacillus cereus food infection as multifactorial process. Toxins 12, 701 (2020).

    Google Scholar 

  13. Tokieda, K., Morikawa, Y., Maeyama, K., Mori, K. & Ikeda, K. Clinical manifestations of Bacillus cereus meningitis in newborn infants: Bacillus cereus meningitis in newborn infants. J. Paediatr. Child. Health. 35, 582–584 (1999).

    Google Scholar 

  14. Schoeni, J. L. & Lee Wong, A. C. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68, 636–648 (2005).

    Google Scholar 

  15. Senesi, S. & Ghelardi, E. Production secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2, 1690–1703 (2010).

  16. Berthold-Pluta, A., Pluta, A. & Garbowska, M. The effect of selected factors on the survival of Bacillus cereus in the human Gastrointestinal tract. Microb. Pathog. 82, 7–14 (2015).

    Google Scholar 

  17. Bursová, Š. et al. Evaluation of Bacillus cereus growth in cooked rice. J. Microbiol. Biotechnol. Food Sci. 14, e10985–e10985 (2024).

    Google Scholar 

  18. Fermanian, C., Fremy, J. M. & Claisse, M. Effect of temperature on the vegetative growth of type and field strains of Bacillus cereus. Lett. Appl. Microbiol. 19, 414–418 (1994).

    Google Scholar 

  19. Finlay, W. J. J., Logan, N. A. & Sutherland, A. D. Bacillus cereus produces most emetic toxin at lower temperatures. Lett. Appl. Microbiol. 31, 385–389 (2000).

    Google Scholar 

  20. Jurakova, V. et al. Gene expression and metabolic activity of Streptococcus mutans during exposure to dietary carbohydrates glucose, sucrose, lactose, and xylitol. Mol. Oral Microbiol. 38, 424–441 (2023).

    Google Scholar 

  21. Ceuppens, S. et al. Regulation of toxin production by Bacillus cereus and its food safety implications. Crit. Rev. Microbiol. 37, 188–213 (2011).

    Google Scholar 

  22. Rowan, N. J. & Anderson, J. G. Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Appl. Environ. Microbiol. 63, 1182–1184 (1997).

    Google Scholar 

  23. Prince, C. & Kovac, J. Regulation of enterotoxins associated with Bacillus cereus sensu Lato toxicoinfection. Appl Environ. Microbiol 88, e00405–e00422 (2024).

  24. Holesh, J. E., Aslam, S. & Martin, A. Physiology, carbohydrates. In StatPearls (StatPearls Publishing, 2025).

  25. Suez, J., Korem, T., Zilberman-Schapira, G., Segal, E. & Elinav, E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes. 6, 149–155 (2015).

    Google Scholar 

  26. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Google Scholar 

  27. Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods. 15, 475–476 (2018).

    Google Scholar 

  28. da Leprevost, V. BioContainers: an open-source and community-driven framework for software standardization. Bioinforma Oxf. Engl. 33, 2580–2582 (2017).

    Google Scholar 

  29. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma Oxf. Engl. 30, 923–930 (2014).

    Google Scholar 

  30. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  31. Geistlinger, L., Csaba, G. & Zimmer, R. Bioconductor’s enrichmentbrowser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinform. 17, 45 (2016).

    Google Scholar 

  32. Izco, J. M., Tormo, M. & Jiménez-Flores, R. Development of a CE method to analyze organic acids in dairy products: application to study the metabolism of Heat-Shocked spores. J. Agric. Food Chem. 50, 1765–1773 (2002).

    Google Scholar 

  33. Zhang, Y. et al. A new mechanism of carbon metabolism and acetic acid balance regulated by CcpA. Microorganisms 11, 2303 (2023).

    Google Scholar 

  34. Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. 110, 10039–10044 (2013).

    Google Scholar 

  35. Riemann, H. & Cliver, D. O. Foodborne Infections and Intoxications (Academic, 2006).

  36. Carlin, F. et al. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res. Int. 43, 1885–1894 (2010).

    Google Scholar 

  37. Warda, A. K. et al. Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLOS ONE. 11, e0156796 (2016).

    Google Scholar 

  38. van Netten, P., van De Moosdijk, A., van Hoensel, P., Mossel, D. A. & Perales, I. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69, 73–79 (1990).

    Google Scholar 

  39. Fermanian, C., Lapeyre, C., Fremy, J. M. & Claisse, M. Diarrhoeal toxin production at low temperature by selected strains of Bacillus cereus. J. Dairy. Res. 64, 551–559 (1997).

    Google Scholar 

  40. Ouhib, O., Clavel, T. & Schmitt, P. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr. Microbiol. 53, 222–226 (2006).

    Google Scholar 

  41. Chang, J. D. et al. Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species. Sci. Rep. 11, 23917 (2021).

    Google Scholar 

  42. Kazan, D., Çamurdan, A. & Hortaçsu, A. The effect of glucose concentration on the growth rate and some intracellular components of a recombinant E. coli culture. Process. Biochem. 30, 269–273 (1995).

    Google Scholar 

  43. Sutherland, A. D. & Limond, A. M. Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J. Dairy. Res. 60, 575–580 (1993).

    Google Scholar 

  44. Lindbäck, T., Økstad, O. A., Rishovd, A. L. & Kolstø, A. B. Insertional inactivation of HblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145, 3139–3146 (1999).

    Google Scholar 

  45. Outurquin, G. et al. Bacillus cereus strains from donor human milk and hospital environment: uncovering a putative common origin using comparative analysis of toxin and infra-red spectroscopy profiles. AIMS Microbiol. 9, 419–430 (2023).

    Google Scholar 

  46. Wang, Y. et al. Effect of temperature, pH, and Aw on cereulide synthesis and regulator genes transcription with respect to Bacillus cereus growth and cereulide production. Toxins 16, 32 (2024).

    Google Scholar 

Download references