Effect of dual bacterial combinations on in vitro nutrient degradability, gas production, methane emission, ruminal fermentation parameters and predictive values in sheep

effect-of-dual-bacterial-combinations-on-in-vitro-nutrient-degradability,-gas-production,-methane-emission,-ruminal-fermentation-parameters-and-predictive-values-in-sheep
Effect of dual bacterial combinations on in vitro nutrient degradability, gas production, methane emission, ruminal fermentation parameters and predictive values in sheep

References

  1. Saleem, A. A. et al. The effect of adding Multi-Strain probiotics (MSP) on the Hematological, immunological and antioxidant parameters of male Saidi sheep. Egyptian J. Veterinary Sciences, 56, 11, 2721–28 (2024).

  2. Saleem, A. S. et al. Probiotic supplementation in sustainable sheep production: impacts on health, performance, and methane mitigation. Trop. Anim. Health Prod. 57, 206 (2025).

    Google Scholar 

  3. Pragna, P., Chauhan, S. S., Sejian, V., Leury, B. J. & Dunshea, F. R. Climate change and goat production: enteric methane emission and its mitigation. Animals 8 https://doi.org/10.3390/ani8120235 (2018).

  4. Lei, J. Efficient strategies on supply chain network optimization for industrial carbon emission reduction. arXiv preprint arXiv:2404.16863 (2024).

  5. Bąkowski, M. & Kiczorowska, B. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency–a review. Annals Anim. Sci. 21, 3–28 (2021).

    Google Scholar 

  6. Abdelkarim, M. M., Abdel-Rahman, G., Bassiony, S., Shehata, S. & Al-Sagheer, A. Influence of different probiotic combinations supplementation in a highly concentrated diet on in vitro gas Production, methane Emission, and nutrient degradability in sheep. Egypt. J. Veterinary Sci. 1–11. https://doi.org/10.21608/ejvs.2025.337805.2506 (2025).

  7. Robles-Rodríguez, C. et al. Characterization of an acidogenic bacterial consortium as probiotic and its effect on rumen fermentation in vitro and in vivo. Ruminants 3, 324–346 (2023).

    Google Scholar 

  8. Elghandour, M. M. et al. Prospect of yeast probiotic inclusion enhances livestock feeds utilization and performance: an overview. Biomass Convers. Biorefinery. 14, 2923–2935 (2024).

    Google Scholar 

  9. Ban, Y. & Guan, L. L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 12, 109 (2021).

    Google Scholar 

  10. Saleem, A. S. et al. Impact of probiotic blend on rumen Fermentation, nutrient Digestibility, and blood biochemistry in sheep. Livestock Science, 298, 105728 (2025).

  11. Devadharshini, K. & Devamugilan, C. Probiotics in Ruminants: A Comprehensive Review of Health, Production and Future Frontiers. Chron Aquat Sci.1(10), 182–193 (2024).

  12. Wang, S., Li, J., Dong, Z., Chen, L. & Shao, T. Effect of microbial inoculants on the fermentation characteristics, nutritive value, and in vitro digestibility of various forages. Anim. Sci. J. 90, 178–188. https://doi.org/10.1111/asj.13134 (2019).

    Google Scholar 

  13. Kulkarni, N. A., Chethan, H., Srivastava, R. & Gabbur, A. B. Role of probiotics in ruminant nutrition as natural modulators of health and productivity of animals in tropical countries: an overview. Trop. Anim. Health Prod. 54, 110 (2022).

    Google Scholar 

  14. Reuben, R. C. et al. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food. Agric. 102, 1319–1340 (2022).

    Google Scholar 

  15. Puniya, A. K. et al. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. J. Integr. Agric. 14, 550–560 (2015).

    Google Scholar 

  16. Mia, N., Alam, A., Rahman, M., Ali, M. & Hashem, M. Probiotics to enhance animal production performance and meat quality: A review. Meat Research 4, 2, (2024).

  17. AOAC. Association of Official Analytical Chemists. Official Method of Analysis (15th Ed.) (1990).

  18. Onodera, R. & Henderson, C. Growth factors of bacterial origin for the culture of the rumen oligotrich protozoon, entodinium caudatum. J. Appl. Bacteriol. 48, 125–134 (1980).

    Google Scholar 

  19. Tilley, J. Terry, d. R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111 (1963).

    Google Scholar 

  20. Fievez, V., Babayemi, O. & Demeyer, D. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123, 197–210 (2005).

    Google Scholar 

  21. Blümmel, M. & Becker, K. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 77, 757–768 (1997).

    Google Scholar 

  22. Kamra, D., Sawal, R., Pathak, N., Kewalramani, N. & Agarwal, N. Diurnal variation in ciliate protozoa in the rumen of black Buck (Antilope cervicapra) fed green forage. Lett. Appl. Microbiol. 13, 165–167 (1991).

    Google Scholar 

  23. Conway, E. J. Microdiffusion analysis and volumetric error. (1957).

  24. Warner, A. Production of volatile fatty acids in the rumen: methods of measurement. (1964).

  25. Menke, K. et al. The Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agricultural Sci. 93, 217–222 (1979).

    Google Scholar 

  26. Patra, A., Park, T., Kim, M. & Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8, 1–18 (2017).

    Google Scholar 

  27. B Duncan, D. Multiple range and multiple F tests. Biometrics 11, 1–42 (1955).

    Google Scholar 

  28. Sheikh, G., Ganai, A., Ishfaq, A., Afzal, Y. & Ahmad, H. In vitro effect of probiotic mix and fibrolytic enzyme mixture on digestibility of paddy straw. Adv. Anim. Vet. Sci. 5, 260–266 (2017).

    Google Scholar 

  29. Adesogan, A. et al. Symposium review: technologies for improving fiber utilization. J. Dairy Sci. 102, 5726–5755 (2019).

    Google Scholar 

  30. Nsereko, V. L. et al. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim. Feed Sci. Technol. 145, 122–135 (2008).

    Google Scholar 

  31. Ayaşan, T. et al. Comparison of in vitro gas production, nutritive value, metabolizable energy and organic matter digestibility of some Chickpea varieties. Iran. J. Appl. Anim. Sci. 8, 131–136 (2018).

    Google Scholar 

  32. Wingard, S., Vanzant, E., Harmon, D. & McLeod, K. Effect of Direct-Fed Microbials and Monensin on In vitro Fermentation of a High-Forage Diet. J Anim Sci Res 2(3), doi dx.doi. org/10.16966/2576-6457.120 (2018).

  33. Jeyanathan, J., Martin, C. & Morgavi, D. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep. J. Anim. Sci. 94, 739–750 (2016).

    Google Scholar 

  34. Chen, L., Ren, A., Zhou, C. & Tan, Z. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian J. Anim. Sci. 16, 52–60 (2017).

    Google Scholar 

  35. Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197 (1994).

    Google Scholar 

  36. Santoso, B. et al. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian-Australasian J. Anim. Sci. 16, 534–540 (2003).

    Google Scholar 

  37. Estermann, B. et al. Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus, and methane of beef cows with calves. J. Anim. Sci. 80, 1124–1134 (2002).

    Google Scholar 

  38. Singh, S. et al. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 178, 2–11 (2012).

    Google Scholar 

  39. Doyle, N. et al. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Front. Microbiol. 10, 2207 (2019).

    Google Scholar 

  40. Miguel, M. et al. Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Anim. Bioscience. 34, 642 (2020).

    Google Scholar 

  41. Abdelbagi, M., Ridwan, R., Fidriyanto, R. & Jayanegara, A. in IOP Conference Series: Earth and Environmental Science. 012050 (IOP Publishing).

  42. Rahman, M. M., Salleh, M. A. M., Sultana, N., Kim, M. & Ra, C. S. Estimation of total volatile fatty acid (VFA) from total organic carbons (TOCs) assessment through in vitro fermentation of livestock feeds. Afr. J. Microbiol. Res. 7, 1378–1384 (2013).

    Google Scholar 

  43. Contreras-Govea, F. E., Muck, R. E., Broderick, G. A. & Weimer, P. J. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed Sci. Technol. 179, 61–68 (2013).

    Google Scholar 

  44. Arioli, S. et al. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. Bulgaricus homolactic fermentation. Int. J. Food Microbiol. 247, 55–64 (2017).

    Google Scholar 

  45. Doto, S. & Liu, J. Effects of direct-fed microbials and their combinations with yeast culture on in vitro rumen fermentation characteristics. (2011).

  46. Hristov, A. N., Ropp, J. K. & Hunt, C. W. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 99, 25–36 (2002).

    Google Scholar 

  47. Sari, N. et al. in IOP Conference Series: Earth and Environmental Science. 012057 (IOP Publishing).

  48. Chaucheyras, F., Fonty, G., Gouet, P., Bertin, G. & Salmon, J. M. Effects of a strain of Saccharomyces cerevisiae (Levucell® SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42, 927–933 (1996).

    Google Scholar 

  49. Amin, A.B., Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Anim Nutri 7(1):31–41.https://doi.org/10.1016/j.aninu.2020.10.005 (2021)

  50. Galıp, N. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in Rams. J. Anim. Physiol. Anim. Nutr. 90, 446–452 (2006).

    Google Scholar 

  51. Chiquette, J., Allison, M. & Rasmussen, M. Prevotella Bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91, 3536–3543 (2008).

    Google Scholar 

  52. Astuti, W. D. et al. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Veterinary World. 15, 1969 (2022).

    Google Scholar 

  53. Pongsub, S., Suriyapha, C., Boontiam, W. & Cherdthong, A. Effect of cassava pulp treated with Lactobacillus casei TH14, urea, and molasses on gas kinetics, rumen fermentation, and degradability using the in vitro gas technique. Heliyon 10, 8 (2024).

  54. Patel, S. & Ambalam, P. Role of rumen protozoa: metabolic and fibrolytic. Adv. Biotechnol. Microbiol. 10, 1–6 (2018).

    Google Scholar 

  55. Callaway, T. R., De Melo, C., Russell, J. B. & A. M. & The effect of Nisin and Monensin on ruminal fermentations in vitro. Curr. Microbiol. 35, 90–96 (1997).

    Google Scholar 

  56. Santoso, B. et al. Effects of supplementing galacto-oligosaccharides, Yucca Schidigera or Nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 91, 209–217 (2004).

    Google Scholar 

  57. Cai, L., Hartanto, R., Zhang, J. & Qi, D. Clostridium Butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 11, 3261 (2021).

    Google Scholar 

  58. Liang Jing, L. J., Nie CunXi, N. C. & Zhang WenJu, Z. W. & Chen Cheng, C. C. Biological function of Clostridium butyricum and its application in animal production. (2018).

  59. Izuddin, W. I., Loh, T. C., Samsudin, A. A. & Foo, H. L. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population. Revista Brasileira De Zootecnia. 47, e20170255 (2018).

    Google Scholar 

  60. Paengkoum, P., Yong, H., Traiyakun, S. & Khotsakdee, J. Effect of blend probiotics on rumen fermentation and plasma fatty acid contents and plasma n6: n3 ratios of growing goats. J. Anim. Vet. Adv. 10, 3112–3117 (2011).

    Google Scholar 

  61. Bergman, E. Energy contributions of volatile fatty acids from the Gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    Google Scholar 

  62. Van Soest, P. J. Nutritional Ecology of the Ruminant (Cornell University Press, 1994).

  63. Bannink, A. et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238, 36–51 (2006).

    Google Scholar 

  64. Retta, K. S. Role of probiotics in rumen fermentation and animal performance: a review. Int. J. Livest. Prod. 7, 24–32 (2016).

    Google Scholar 

  65. Lu, Z., Shen, H. & Shen, Z. Effects of dietary-SCFA on microbial protein synthesis and urinal urea-N excretion are related to microbiota diversity in rumen. Front. Physiol. 10, 1079 (2019).

    Google Scholar 

Download references