References
-
Saleem, A. A. et al. The effect of adding Multi-Strain probiotics (MSP) on the Hematological, immunological and antioxidant parameters of male Saidi sheep. Egyptian J. Veterinary Sciences, 56, 11, 2721–28 (2024).
-
Saleem, A. S. et al. Probiotic supplementation in sustainable sheep production: impacts on health, performance, and methane mitigation. Trop. Anim. Health Prod. 57, 206 (2025).
-
Pragna, P., Chauhan, S. S., Sejian, V., Leury, B. J. & Dunshea, F. R. Climate change and goat production: enteric methane emission and its mitigation. Animals 8 https://doi.org/10.3390/ani8120235 (2018).
-
Lei, J. Efficient strategies on supply chain network optimization for industrial carbon emission reduction. arXiv preprint arXiv:2404.16863 (2024).
-
Bąkowski, M. & Kiczorowska, B. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency–a review. Annals Anim. Sci. 21, 3–28 (2021).
-
Abdelkarim, M. M., Abdel-Rahman, G., Bassiony, S., Shehata, S. & Al-Sagheer, A. Influence of different probiotic combinations supplementation in a highly concentrated diet on in vitro gas Production, methane Emission, and nutrient degradability in sheep. Egypt. J. Veterinary Sci. 1–11. https://doi.org/10.21608/ejvs.2025.337805.2506 (2025).
-
Robles-Rodríguez, C. et al. Characterization of an acidogenic bacterial consortium as probiotic and its effect on rumen fermentation in vitro and in vivo. Ruminants 3, 324–346 (2023).
-
Elghandour, M. M. et al. Prospect of yeast probiotic inclusion enhances livestock feeds utilization and performance: an overview. Biomass Convers. Biorefinery. 14, 2923–2935 (2024).
-
Ban, Y. & Guan, L. L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 12, 109 (2021).
-
Saleem, A. S. et al. Impact of probiotic blend on rumen Fermentation, nutrient Digestibility, and blood biochemistry in sheep. Livestock Science, 298, 105728 (2025).
-
Devadharshini, K. & Devamugilan, C. Probiotics in Ruminants: A Comprehensive Review of Health, Production and Future Frontiers. Chron Aquat Sci.1(10), 182–193 (2024).
-
Wang, S., Li, J., Dong, Z., Chen, L. & Shao, T. Effect of microbial inoculants on the fermentation characteristics, nutritive value, and in vitro digestibility of various forages. Anim. Sci. J. 90, 178–188. https://doi.org/10.1111/asj.13134 (2019).
-
Kulkarni, N. A., Chethan, H., Srivastava, R. & Gabbur, A. B. Role of probiotics in ruminant nutrition as natural modulators of health and productivity of animals in tropical countries: an overview. Trop. Anim. Health Prod. 54, 110 (2022).
-
Reuben, R. C. et al. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food. Agric. 102, 1319–1340 (2022).
-
Puniya, A. K. et al. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. J. Integr. Agric. 14, 550–560 (2015).
-
Mia, N., Alam, A., Rahman, M., Ali, M. & Hashem, M. Probiotics to enhance animal production performance and meat quality: A review. Meat Research 4, 2, (2024).
-
AOAC. Association of Official Analytical Chemists. Official Method of Analysis (15th Ed.) (1990).
-
Onodera, R. & Henderson, C. Growth factors of bacterial origin for the culture of the rumen oligotrich protozoon, entodinium caudatum. J. Appl. Bacteriol. 48, 125–134 (1980).
-
Tilley, J. Terry, d. R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111 (1963).
-
Fievez, V., Babayemi, O. & Demeyer, D. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123, 197–210 (2005).
-
Blümmel, M. & Becker, K. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 77, 757–768 (1997).
-
Kamra, D., Sawal, R., Pathak, N., Kewalramani, N. & Agarwal, N. Diurnal variation in ciliate protozoa in the rumen of black Buck (Antilope cervicapra) fed green forage. Lett. Appl. Microbiol. 13, 165–167 (1991).
-
Conway, E. J. Microdiffusion analysis and volumetric error. (1957).
-
Warner, A. Production of volatile fatty acids in the rumen: methods of measurement. (1964).
-
Menke, K. et al. The Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agricultural Sci. 93, 217–222 (1979).
-
Patra, A., Park, T., Kim, M. & Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8, 1–18 (2017).
-
B Duncan, D. Multiple range and multiple F tests. Biometrics 11, 1–42 (1955).
-
Sheikh, G., Ganai, A., Ishfaq, A., Afzal, Y. & Ahmad, H. In vitro effect of probiotic mix and fibrolytic enzyme mixture on digestibility of paddy straw. Adv. Anim. Vet. Sci. 5, 260–266 (2017).
-
Adesogan, A. et al. Symposium review: technologies for improving fiber utilization. J. Dairy Sci. 102, 5726–5755 (2019).
-
Nsereko, V. L. et al. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim. Feed Sci. Technol. 145, 122–135 (2008).
-
Ayaşan, T. et al. Comparison of in vitro gas production, nutritive value, metabolizable energy and organic matter digestibility of some Chickpea varieties. Iran. J. Appl. Anim. Sci. 8, 131–136 (2018).
-
Wingard, S., Vanzant, E., Harmon, D. & McLeod, K. Effect of Direct-Fed Microbials and Monensin on In vitro Fermentation of a High-Forage Diet. J Anim Sci Res 2(3), doi dx.doi. org/10.16966/2576-6457.120 (2018).
-
Jeyanathan, J., Martin, C. & Morgavi, D. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep. J. Anim. Sci. 94, 739–750 (2016).
-
Chen, L., Ren, A., Zhou, C. & Tan, Z. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian J. Anim. Sci. 16, 52–60 (2017).
-
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197 (1994).
-
Santoso, B. et al. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian-Australasian J. Anim. Sci. 16, 534–540 (2003).
-
Estermann, B. et al. Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus, and methane of beef cows with calves. J. Anim. Sci. 80, 1124–1134 (2002).
-
Singh, S. et al. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 178, 2–11 (2012).
-
Doyle, N. et al. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Front. Microbiol. 10, 2207 (2019).
-
Miguel, M. et al. Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Anim. Bioscience. 34, 642 (2020).
-
Abdelbagi, M., Ridwan, R., Fidriyanto, R. & Jayanegara, A. in IOP Conference Series: Earth and Environmental Science. 012050 (IOP Publishing).
-
Rahman, M. M., Salleh, M. A. M., Sultana, N., Kim, M. & Ra, C. S. Estimation of total volatile fatty acid (VFA) from total organic carbons (TOCs) assessment through in vitro fermentation of livestock feeds. Afr. J. Microbiol. Res. 7, 1378–1384 (2013).
-
Contreras-Govea, F. E., Muck, R. E., Broderick, G. A. & Weimer, P. J. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed Sci. Technol. 179, 61–68 (2013).
-
Arioli, S. et al. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. Bulgaricus homolactic fermentation. Int. J. Food Microbiol. 247, 55–64 (2017).
-
Doto, S. & Liu, J. Effects of direct-fed microbials and their combinations with yeast culture on in vitro rumen fermentation characteristics. (2011).
-
Hristov, A. N., Ropp, J. K. & Hunt, C. W. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 99, 25–36 (2002).
-
Sari, N. et al. in IOP Conference Series: Earth and Environmental Science. 012057 (IOP Publishing).
-
Chaucheyras, F., Fonty, G., Gouet, P., Bertin, G. & Salmon, J. M. Effects of a strain of Saccharomyces cerevisiae (Levucell® SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42, 927–933 (1996).
-
Amin, A.B., Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Anim Nutri 7(1):31–41.https://doi.org/10.1016/j.aninu.2020.10.005 (2021)
-
Galıp, N. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in Rams. J. Anim. Physiol. Anim. Nutr. 90, 446–452 (2006).
-
Chiquette, J., Allison, M. & Rasmussen, M. Prevotella Bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91, 3536–3543 (2008).
-
Astuti, W. D. et al. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Veterinary World. 15, 1969 (2022).
-
Pongsub, S., Suriyapha, C., Boontiam, W. & Cherdthong, A. Effect of cassava pulp treated with Lactobacillus casei TH14, urea, and molasses on gas kinetics, rumen fermentation, and degradability using the in vitro gas technique. Heliyon 10, 8 (2024).
-
Patel, S. & Ambalam, P. Role of rumen protozoa: metabolic and fibrolytic. Adv. Biotechnol. Microbiol. 10, 1–6 (2018).
-
Callaway, T. R., De Melo, C., Russell, J. B. & A. M. & The effect of Nisin and Monensin on ruminal fermentations in vitro. Curr. Microbiol. 35, 90–96 (1997).
-
Santoso, B. et al. Effects of supplementing galacto-oligosaccharides, Yucca Schidigera or Nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 91, 209–217 (2004).
-
Cai, L., Hartanto, R., Zhang, J. & Qi, D. Clostridium Butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 11, 3261 (2021).
-
Liang Jing, L. J., Nie CunXi, N. C. & Zhang WenJu, Z. W. & Chen Cheng, C. C. Biological function of Clostridium butyricum and its application in animal production. (2018).
-
Izuddin, W. I., Loh, T. C., Samsudin, A. A. & Foo, H. L. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population. Revista Brasileira De Zootecnia. 47, e20170255 (2018).
-
Paengkoum, P., Yong, H., Traiyakun, S. & Khotsakdee, J. Effect of blend probiotics on rumen fermentation and plasma fatty acid contents and plasma n6: n3 ratios of growing goats. J. Anim. Vet. Adv. 10, 3112–3117 (2011).
-
Bergman, E. Energy contributions of volatile fatty acids from the Gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).
-
Van Soest, P. J. Nutritional Ecology of the Ruminant (Cornell University Press, 1994).
-
Bannink, A. et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238, 36–51 (2006).
-
Retta, K. S. Role of probiotics in rumen fermentation and animal performance: a review. Int. J. Livest. Prod. 7, 24–32 (2016).
-
Lu, Z., Shen, H. & Shen, Z. Effects of dietary-SCFA on microbial protein synthesis and urinal urea-N excretion are related to microbiota diversity in rumen. Front. Physiol. 10, 1079 (2019).
