References
-
Cai, W. et al. Biological and clinical aspects of an olive oil-based lipid emulsion—A review. Nutrients 10, 776. https://doi.org/10.3390/nu10060776 (2018).
-
Nandivada, P. et al. Treatment of parenteral nutrition-associated liver disease: The role of lipid emulsions. Adv. Nutr. 4, 711–717. https://doi.org/10.3945/an.113.004770 (2013).
-
Wirtitsch, M. et al. Effect of different lipid emulsions on the immunological function in humans: A systematic review with meta-analysis. Clin. Nutr. 26, 302–313. https://doi.org/10.1016/j.clnu.2007.02.001 (2007).
-
Hecker, M. et al. Immunomodulation by lipid emulsions in pulmonary inflammation: A randomized controlled trial. Crit. Care https://doi.org/10.1186/s13054-015-0933-6 (2015).
-
Notz, Q. et al. Omega-6 sparing effects of parenteral lipid emulsions—An updated systematic review and meta-analysis on clinical outcomes in critically ill patients. Crit Care 26, 23. https://doi.org/10.1186/s13054-022-03896-3 (2022).
-
Manzanares, W., Langlois, P. L., Dhaliwal, R., Lemieux, M. & Heyland, D. K. Intravenous fish oil lipid emulsions in critically ill patients: An updated systematic review and meta-analysis. Crit. Care 19, 167. https://doi.org/10.1186/s13054-015-0888-7 (2015).
-
Cury-Boaventura, M. F., Gorjão, R., De Lima, T. M., Newsholme, P. & Curi, R. Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci. 78, 1448–1456. https://doi.org/10.1016/j.lfs.2005.07.038 (2006).
-
Cury-Boaventura, M. F., Pompéia, C. & Curi, R. Comparative toxicity of oleic acid and linoleic acid on Jurkat cells. Clin. Nutr. 23, 721–732. https://doi.org/10.1016/j.clnu.2003.12.004 (2004).
-
Cury-Boaventura, M. F., CristineKanunfre, C., Gorjão, R., Martins de Lima, T. & Curi, R. Mechanisms involved in Jurkat cell death induced by oleic and linoleic acids. Clin. Nutr. 25, 1004–1014. https://doi.org/10.1016/j.clnu.2006.05.008 (2006).
-
Candiloro, F. et al. Influence of different lipid emulsions on specific immune cell functions in head and neck cancer patients receiving supplemental parenteral nutrition: An exploratory analysis. Nutrition 86, 111178. https://doi.org/10.1016/j.nut.2021.111178 (2021).
-
Driscoll, D. F. & Bistrian, B. R. Cytokine release syndrome associated with immune-modulating chemotherapy: Potential mitigating role of intravenous omega-3 fatty acid triglycerides. Cancer Rep. https://doi.org/10.1002/cnr2.70025 (2024).
-
RialSaborido, J., Völkl, S., Aigner, M., Mackensen, A. & Mougiakakos, D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) https://doi.org/10.3390/cancers14215442 (2022).
-
Mamo, T., Dreyzin, A., Stroncek, D. & McKenna, D. H. Emerging biomarkers for monitoring chimeric antigen receptor T-cell therapy. Clin. Chem. 70, 116–127. https://doi.org/10.1093/clinchem/hvad179 (2024).
-
Noor, M., Noor, A. M., Masuda, T. & Arai, F. Microfluidic device for rapid investigation of the deformability of leukocytes in whole blood samples. ROBOMECH J. https://doi.org/10.1186/s40648-019-0153-y (2020).
-
Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593. https://doi.org/10.1038/s41592-020-0818-8 (2020).
-
Zhuang, C., Gould, J. E., Enninful, A., Shao, S. & Mak, M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. Trends Pharmacol. Sci. 44, 366–378. https://doi.org/10.1016/j.tips.2023.03.007 (2023).
-
Otto, O. et al. Real-time deformability cytometry: On-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202. https://doi.org/10.1038/nmeth.3281 (2015).
-
Fajdiga, L., Zemljič, Š, Kokalj, T. & Derganc, J. Shear flow deformability cytometry: A microfluidic method advancing towards clinical use—A review. Anal. Chim. Acta 1355, 343894. https://doi.org/10.1016/j.aca.2025.343894 (2025).
-
Toepfner, N. et al. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. Elife https://doi.org/10.7554/eLife.29213.001 (2018).
-
Doan, M. et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 36, 649–652. https://doi.org/10.1016/j.tibtech.2017.12.008 (2018).
-
Tuljak, M., Lajevec, D., Štanc, R., ZemljičJokhadar, Š & Derganc, J. Low-cost programable stroboscopic illumination with sub-microsecond pulses for high-throughput microfluidic applications. HardwareX https://doi.org/10.1016/j.ohx.2022.e00367 (2022).
-
Urbanska, M., Rosendahl, P., Kräter, M. & Guck, J. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry. Methods Cell Biol. 147, 175–198. https://doi.org/10.1016/bs.mcb.2018.06.009 (2018).
-
Repas, J., Peternel, L., Sourij, H. & Pavlin, M. Low glucose availability potentiates the effects of metformin on model T cell activation and exhaustion markers in vitro. Front. Endocrinol. https://doi.org/10.3389/fendo.2023.1216193 (2023).
-
Verlengia, R. et al. Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J. Nutr. Biochem. 15, 657–665. https://doi.org/10.1016/j.jnutbio.2004.04.008 (2004).
-
Hidalgo, M. A., Carretta, M. D. & Burgos, R. A. Long chain fatty acids as modulators of immune cells function: Contribution of FFA1 and FFA4 receptors. Front. Physiol. https://doi.org/10.3389/fphys.2021.668330 (2021).
-
Liu, Y. et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti-inflammatory role in macrophages. Immunology 143, 81–95. https://doi.org/10.1111/imm.12296 (2014).
-
de Jong, A. J., Kloppenburg, M., Toes, R. E. M. & Ioan-Facsinay, A. Fatty acids, lipid mediators, and T-cell function. Front. Immunol. 5, 483. https://doi.org/10.3389/fimmu.2014.00483 (2014).
-
Rosa Neto, J. C. et al. The immunometabolic roles of various fatty acids in macrophages and lymphocytes. Int. J. Mol. Sci. 22, 8460. https://doi.org/10.3390/ijms22168460 (2021).
-
Shaikh, S. R. & Edidin, M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am. J. Clin. Nutr. 84, 1277–1289. https://doi.org/10.1093/ajcn/84.6.1277 (2006).
-
Shaikh, S. R. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J. Nutr. Biochem. 23, 101–105. https://doi.org/10.1016/j.jnutbio.2011.07.001 (2012).
-
Schuchardt, J. P. et al. Omega-3 supplementation changes the physical properties of leukocytes but not erythrocytes in healthy individuals: an exploratory trial. Prostaglandins Leukot Essent Fatty Acids 102636, 202. https://doi.org/10.1016/j.plefa.2024.102636 (2024).
-
Gyan, E. et al. Adjunction of a fish oil emulsion to cytarabine and daunorubicin induction chemotherapy in high-risk AML. Sci. Rep. 12, 9748. https://doi.org/10.1038/s41598-022-13626-y (2022).
-
Picou, F. et al. n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol. Res. 136, 45–55. https://doi.org/10.1016/j.phrs.2018.08.015 (2018).
-
Hishikawa, D., Valentine, W. J., Iizuka-Hishikawa, Y., Shindou, H. & Shimizu, T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett. 591, 2730–2744. https://doi.org/10.1002/1873-3468.12825 (2017).
-
Bruno, M. J., Koeppe II, R. E., Andersen, O. S. Docosahexaenoic acid alters bilayer elastic properties. PNAS. 104, 9638-9643. https://doi.org/10.1073/pnas.0701015104 (2007).
-
Fan, Y. Y. et al. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br. J. Nutr. 119, 163–175. https://doi.org/10.1017/S0007114517003385 (2018).
-
Mason, R. P., Jacob, R. F., Shrivastava, S., Sherratt, S. C. R. & Chattopadhyay, A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys. Acta Biomembr. 1858, 3131–3140. https://doi.org/10.1016/j.bbamem.2016.10.002 (2016).
-
Kräter, M. et al. AIDeveloper: Deep learning image classification in life science and beyond. Adv. Sci. 8, 2003743. https://doi.org/10.1002/advs.202003743 (2021).
-
Chen, J. et al. Automated cytometric gating with human-level performance using bivariate segmentation. Nat. Commun. 16, 1576. https://doi.org/10.1038/s41467-025-56622-2 (2025).
-
Combs, C. et al. Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels. Biomicrofluidics https://doi.org/10.1063/5.0077432 (2022).
-
Kampen, P. J. T. et al. Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition. Biomed Microdevices https://doi.org/10.1007/s10544-023-00688-6 (2024).
-
Zhou, Z. et al. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel. Lab Chip 23, 4528–4539. https://doi.org/10.1039/d3lc00591g (2023).
-
Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic cd8+ t cells. J. Exp. Med. https://doi.org/10.1084/jem.20191920 (2020).
-
Tang, Y., Chen, Z., Zuo, Q. & Kang, Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol. Immunol. https://doi.org/10.1038/s41423-024-01224-z (2024).
-
Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949. https://doi.org/10.3389/fimmu.2017.01949 (2018).
-
Bosma, M. et al. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 1648–1655. https://doi.org/10.1016/j.bbalip.2014.09.012 (2014).
-
Zhang, W. et al. Lipid Droplets, the central hub integrating cell metabolism and the immune system. Front. Physiol. https://doi.org/10.3389/fphys.2021.746749 (2021).
-
Nanhuck, R. M., Doublet, A. & Yaqoob, P. Effects of lipid emulsions on lipid body formation and eicosanoid production by human peripheral blood mononuclear and polymorphonuclear cells. Clin. Nutr. 28, 556–564. https://doi.org/10.1016/j.clnu.2009.05.008 (2009).
-
Noureddine, N., et al. Size of lipid emulssion droplets influences metabolism. Biochem. Biophys. Res. Commun. 733, 150680. https://doi.org/10.1016/j.bbrc.2024.150680 (2024).
-
Waugh, R. E., Lomakina, E., Amitrano, A. & Kim, M. Activation effects on the physical characteristics of T lymphocytes. Front. Bioeng. Biotechnol. 11, 1175570. https://doi.org/10.3389/fbioe.2023.1175570 (2023).
