Efficient denitrification and N2O mitigation in low-C/N wastewater treatment by promoting TCA cycle anaplerosis via glyoxylate shunt regulation

efficient-denitrification-and-n2o-mitigation-in-low-c/n-wastewater-treatment-by-promoting-tca-cycle-anaplerosis-via-glyoxylate-shunt-regulation
Efficient denitrification and N2O mitigation in low-C/N wastewater treatment by promoting TCA cycle anaplerosis via glyoxylate shunt regulation
  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  • Liu, T. et al. Sustainable wastewater management through nitrogen-cycling microorganisms. Nat. Water 2, 936–952 (2024).

    Article  CAS  Google Scholar 

  • Ye, J. et al. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nat. Water 2, 531–540 (2024).

    Article  CAS  Google Scholar 

  • Shi, H. et al. How β-cyclodextrin-functionalized biochar enhanced biodenitrification in low C/N conditions via regulating substrate metabolism and electron utilization. Environ. Sci. Technol. 57, 11122–11133 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, Z. & Chen, Y. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environ. Sci. Technol. 55, 8068–8078 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Mønster, J. & Scheutz, C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 61, 108–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Du, W.-J. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 1, 166–175 (2023).

    Article  Google Scholar 

  • Daelman, M. R. J. et al. Methane emission during municipal wastewater treatment. Water Res. 46, 3657–3670 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q. et al. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system. Water Res. 267, 122502 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y. et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands. Water Res. 202, 117420 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. et al. Unveiling the coupling mechanism between central carbon and nitrogen metabolism of Pseudomonas stutzeri. ACS EST Water 5, 230–241 (2025).

    Article  CAS  Google Scholar 

  • Mendonca, C. M. et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc. Natl Acad. Sci. USA 117, 32358–32369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inigo, M., Deja, S. & Burgess, S. C. Ins and outs of the TCA cycle: the central role of anaplerosis. Annu. Rev. Nutr. 41, 19–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278, 46446–46451 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Krivoruchko, A. et al. Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 28, 28–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. H. et al. Optimum flux rerouting for efficient production of naringenin from acetate in engineered Escherichia coli. Biotechnol. Biofuels Bioprod. 15, 90 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta, Bioenerg. 1827, 136–144 (2013).

    Article  CAS  Google Scholar 

  • Sparacino-Watkins, C., Stolz, J. F. & Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43, 676–706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, S. et al. Use of acetate for the production of 3-hydroxypropionic acid by metabolically-engineered Pseudomonas denitrificans. Bioresour. Technol. 307, 123194 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J. & Jia, Z. Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase. Nature 465, 961–965 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Novackova, I. et al. The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. Int. J. Biol. Macromol. 206, 977–989 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. et al. Enhancing the insecticidal activity of new Bacillus thuringiensis X023 by copper ions. Microb. Cell Fact. 19, 195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorgersen, M. P. et al. Molybdenum availability is key to nitrate removal in contaminated groundwater environments. Appl. Environ. Microbiol. 81, 4976–4983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozaeva, E. et al. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A–dependent bioproduction in rewired Pseudomonas putida. Metab. Eng. 67, 373–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tovilla-Coutiño, D. B. et al. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metab. Eng. 61, 171–180 (2020).

    Article  PubMed  Google Scholar 

  • Nie, M., Wang, J. & Zhang, K. Engineering a novel Acetyl-CoA pathway for efficient biosynthesis of acetyl-CoA-derived compounds. ACS Synth. Biol. 13, 358–369 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, H. A. et al. Multi-omics analysis revealed the selective enrichment of partial denitrifying bacteria for the stable coupling of partial-denitrification and anammox process under the influence of low strength magnetic field. Water Res. 245, 120619 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Dolan, S. K. & Welch, M. The glyoxylate shunt, 60 years on. Annu. Rev. Microbiol. 72, 309–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fang, J. et al. Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism. Bioresour. Technol. 121, 379–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. & Wang, W.-X. Intracellular biotransformation of Cu(II)/Cu(I) explained high Cu toxicity to phytoplankton Chlamydomonas reinhardtii. Environ. Sci. Technol. 55, 14772–14781 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Arguello, J. M. et al. Mechanisms of copper homeostasis in bacteria. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2013.00073 (2013).

  • González-Guerrero, M. & Argüello, J. M. Mechanism of Cu+-transporting ATPases. Proc. Natl Acad. Sci. USA 105, 5992–5997 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, R. et al. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environ. Sci. Technol. 50, 9915–9922 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Siderophores as a selective regulator for enhancing anaerobic ammonium oxidation bacteria. Nat. Water 3, 806–817 (2025).

    Article  CAS  Google Scholar 

  • Jiang, M. et al. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Res. 180, 115916 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y. et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res. 47, 3273–3281 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Müller, C. et al. Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature 608, 626–631 (2022).

    Article  PubMed  Google Scholar 

  • Dong, B. et al. A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar. Environ. Int. 183, 108435 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Liao, Y. et al. From mechanism to application: decrypting light-regulated denitrifying microbiome through geometric deep learning. iMeta 3, e162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, S. et al. Awakening a latent phosphoenolpyruvate–oxaloacetate–glyceraldehyde carbon-fixation pathway for cost-effective nitrogen removal. Chem. Eng. J. 488, 151065 (2024).

    Article  CAS  Google Scholar 

  • Xu, D. et al. Selective genes expression and metabolites transformation drive a robust nitrite accumulation during nitrate reduction under alternating feast-famine condition. Water Res. 255, 121520 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Wan, H. et al. Algal-mediated nitrogen removal and sustainability of algal-derived dissolved organic matter supporting denitrification. Bioresour. Technol. 407, 131083 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Burow, L. C. et al. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities. ISME J. 2, 1040–1051 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y. et al. Cr(VI) reduction and Fe(II) regeneration by Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron. Environ. Sci. Technol. 57, 11313–11324 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Hubenova, Y. et al. The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell. Bioelectrochemistry 116, 10–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Qi, Z. et al. Glyoxylate cycle maintains the metabolic homeostasis of Pseudomonas aeruginosa in viable but nonculturable state induced by chlorine stress. Microbiol. Res. 270, 127341 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Jia, F. et al. FeO might be more suitable than Fe2+ for the construction of anammox-dominated Fe–N coupling system. Water Res. 274, 123097 (2025).

    Article  CAS  PubMed  Google Scholar 

  • An, Z. et al. Synchronous achievement of advanced nitrogen removal and N2O reduction in the anoxic zone in the AOA process for low C/N municipal wastewater. Environ. Sci. Technol. 58, 2335–2345 (2024).

    Article  CAS  PubMed  Google Scholar