Mitchell, J. F. & Leopold, D. A. The marmoset monkey as a model for visual neuroscience. Neurosci. Res. 93, 20–46 (2015).
Philippens, I. H. C. H. M. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 415–435 (Academic Press, 2019).
Kap, Y. S. D. J. & ‘t Hart, B. A. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 437–449 (Academic Press, 2019).
French, J. A. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 477–491 (Academic Press, 2019).
Inoue, T., Yurimoto, T., Seki, F., Sato, K. & Sasaki, E. The common marmoset in biomedical research: experimental disease models and veterinary management. Exp. Anim. 72, 140–150 (2023).
Okano, H., Hikishima, K., Iriki, A. & Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin. Fetal Neonatal Med. 17, 336–340 (2012).
Marini, R. P., Wachtman, L. M., Tardif, S. D., Mansfield, K. & Fox, J, G. The Common Marmoset in Captivity and Biomedical Research 1st edn, Vol. 1 (Academic Press, 2019).
Chan, A. W. et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS ONE 10, e0122335 (2015).
Niu, Y. et al. Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum. Mol. Genet. 24, 2308–2317 (2015).
Niu, Y. et al. Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc. Natl Acad. Sci. USA 107, 17663–17667 (2010).
Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).
Yang, S. H. et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453, 921–924 (2008).
Sasaki, E. et al. Generation of transgenic non-human primates with germline transmission. Nature 459, 523–527 (2009).
Takahashi, T. et al. Birth of healthy offspring following ICSI in in vitro-matured common marmoset (Callithrix jacchus) oocytes. PLoS ONE 9, e95560 (2014).
Sato, K. S. et al. A non-human primate model of familial Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.264259 (2020).
Marshall, V. S., Browne, M. A., Knowles, L., Golos, T. G. & Thomson, J. A. Ovarian stimulation of marmoset monkeys (Callithrix jacchus) using recombinant human follicle stimulating hormone. J. Med. Primatol. 32, 57–66 (2003).
Kurotaki, Y. S. E. Practical reproductive techniques for the common marmoset. J. Mamm. Ova Res. 34, 9 (2017).
Park, J. E. et al. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci. Rep. 6, 34931 (2016).
Kanda, A., Nobukiyo, A., Yoshioka, M., Hatakeyama, T. & Sotomaru, Y. Quality of common marmoset (Callithrix jacchus) oocytes collected after ovarian stimulation. Theriogenology 106, 221–226 (2018).
Tomioka, I., Takahashi, T., Shimada, A., Yoshioka, K. & Sasaki, E. Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium. Theriogenology 78, 1487–1493 (2012).
Grupen, C. G. et al. Effects of ovarian stimulation, with and without human chorionic gonadotrophin, on oocyte meiotic and developmental competence in the marmoset monkey (Callithrix jacchus). Theriogenology 68, 861–872 (2007).
Tkachenko, O. Y. et al. In vitro matured oocytes have a higher developmental potential than in vivo matured oocytes after hormonal ovarian stimulation in Callithrix jacchus. J. Ovarian Res. 17, 120 (2024).
Baldassarre, H., de Matos, D. G., Furnus, C. C., Castro, T. E. & Cabrera Fischer, E. I. Technique for efficient recovery of sheep oocytes by laparoscopic folliculocentesis. Anim. Reprod. Sci. 35, 145–150 (1994).
Baldassarre, H. et al. Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology 57, 275–284 (2002).
Baldassarre, H. et al. Interval of gonadotropin administration for in vitro embryo production from oocytes collected from Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology 116, 64–70 (2018).
Currin, L. et al. Optimization of gonadotropin stimulation protocols for in vitro embryo production in prepubertal Mediterranean water buffalo. Theriogenology 197, 84–93 (2023).
Baldassarre, H. et al. Laparoscopic ovum-pick up and in vitro embryo production in gonadotropin-stimulated gilts: preliminary results and envisioned applications. Theriogenology 214, 141–147 (2024).
Tardif, S. D., Lacker, H. M. & Feuer, M. Follicular development and ovulation in the marmoset monkey as determined by repeated laparoscopic examination. Biol. Reprod. 48, 1113–1119 (1993).
Eom, H. et al. Laparoscopic ovum pick up in common marmoset (Callithrix jacchus). Theriogenol. Wild 7, 1–6 (2025).
Blondin, P., Coenen, K., Guilbault, L. A. & Sirard, M. A. In vitro production of bovine embryos: developmental competence is acquired before maturation. Theriogenology 47, 1061–1075 (1997).
Landry, D. A. et al. Comparative analysis of granulosa cell gene expression in association with oocyte competence in FSH-stimulated Holstein cows. Reprod. Fertil. Dev. 29, 2324–2335 (2017).
Grynberg, M. et al. Comparative effectiveness of gonadotropins used for ovarian stimulation during assisted reproductive technologies (ART) in France: a real-world observational study from the French nationwide claims database (SNDS). Best Pract. Res. Clin. Obstet. Gynaecol. 88, 102308 (2023).
Summers, P. M., Shephard, A. M., Taylor, C. T. & Hearn, J. P. The effects of cryopreservation and transfer on embryonic development in the common marmoset monkey, Callithrix jacchus. J. Reprod. Fertil. 79, 241–250 (1987).
Lopata, A., Summers, P. M. & Hearn, J. P. Births following the transfer of cultured embryos obtained by in vitro and in vivo fertilization in the marmoset monkey (Callithrix jacchus). Fertil. Steril. 50, 503–509 (1988).
Kropp, J., Di Marzo, A. & Golos, T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol. Reprod. 96, 277–287 (2017).
Sotomaru, Y. et al. Preimplantation development of somatic cell cloned embryos in the common marmoset (Callithrix jacchus). Cloning Stem Cells 11, 575–583 (2009).
Ishibashi, H. et al. Efficient embryo transfer in the common marmoset monkey (Callithrix jacchus) with a reduced transfer volume: a non-surgical approach with cryopreserved late-stage embryos. Biol. Reprod. 88, 115 (2013).
Sato, K. et al. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Anim. 53, 244–251 (2024).
Drummer, C. et al. Generation and breeding of EGFP-transgenic marmoset monkeys: cell chimerism and implications for disease modeling. Cells 10, 505 (2021).
Fortune, J. E. Ovarian follicular growth and development in mammals. Biol. Reprod. 50, 225–232 (1994).
Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–155 (1996).
Ginther, O. J., Beg, M. A., Donadeu, F. X. & Bergfelt, D. R. Mechanism of follicle deviation in monovular farm species. Anim. Reprod. Sci. 78, 239–257 (2003).
Eppig, J. J., Wigglesworth, K. & Pendola, F. L. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl Acad. Sci. USA 99, 2890–2894 (2002).
Seita, Y. et al. Poor second ovarian stimulation in cynomolgus monkeys (Macaca fascicularis) is associated with the production of antibodies against human follicle-stimulating hormone. J. Reprod. Dev. 65, 267–273 (2019).
Muller, T. et al. Chorionic gonadotrophin beta subunit mRNA but not luteinising hormone beta subunit mRNA is expressed in the pituitary of the common marmoset (Callithrix jacchus). J. Mol. Endocrinol. 32, 115–128 (2004).
Gilchrist, R. B., Nayudu, P. L. & Hodges, J. K. Maturation, fertilization, and development of marmoset monkey oocytes in vitro. Biol. Reprod. 56, 238–246 (1997).
Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co, London, 1959).
Liu, Z. et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172, 881–887 (2018).
Liao, Z. et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat. Commun. 15, 5 (2024).
Rizos, D., Ward, F., Boland, M. P. & Lonergan, P. Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 56, 1–16 (2001).
Kocyigit, A. & Cevik, M. Correlation between the cryosurvival, cell number and diameter in bovine in vitro produced embryos. Cryobiology 73, 203–208 (2016).
Baldassarre, H. Laparoscopic ovum pick-up followed by in vitro embryo production and transfer in assisted breeding programs for ruminants. Animals 11, 216 (2021).
Bo, G. A., Cedeno, A. & Mapletoft, R. J. Strategies to increment in vivo and in vitro embryo production and transfer in cattle. Anim. Reprod. 16, 411–422 (2019).
Currin, L. et al. Factors affecting the efficiency of in vitro embryo production in prepubertal Mediterranean water buffalo. Animals 12, 3549 (2022).
Gonzalez-Bulnes, A., Garcia-Garcia, R. M., Santiago-Moreno, J., Lopez-Sebastian, A. & Cocero, M. J. Effect of follicular status on superovulatory response in ewes is influenced by presence of corpus luteum at first FSH dose. Theriogenology 58, 1607–1614 (2002).
Mapletoft, R. J., Steward, K. B. & Adams, G. P. Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42, 601–611 (2002).
Piekarski, N. et al. A comparison of oocyte yield between ultrasound-guided and laparoscopic oocyte retrieval in rhesus macaques. Animals 13, 3017 (2023).
Yoshioka, K., Suzuki, C. & Onishi, A. Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213 (2008).
Schneiders, A., Sonksen, J. & Hodges, J. K. Penile vibratory stimulation in the marmoset monkey: a practical alternative to electro-ejaculation, yielding ejaculates of enhanced quality. J. Med. Primatol. 33, 98–104 (2004).
Toyoda, Y. & Yokoyama, M. The early history of the TYH medium for in vitro fertilization of mouse ova. J. Mamm. Ova Res. 33, 3–10 (2016).
Glanzner, W. G., Rissi, V. B. & Bordignon, V. Somatic cell nuclear transfer in pigs. Methods Mol. Biol. 2647, 197–210 (2023).
Van Thuan, N. et al. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138, 309–317 (2009).
Tomioka, I. et al. Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease model. Biol. Reprod. 97, 772–780 (2017).
Marshall, V. S., Kalishman, J. & Thomson, J. A. Nonsurgical embryo transfer in the common marmoset monkey. J. Med. Primatol. 26, 241–247 (1997).
