Electrochemical sensors for in situ monitoring of reactive species during cold atmospheric plasma-based therapies

electrochemical-sensors-for-in situ-monitoring-of-reactive-species-during-cold-atmospheric-plasma-based-therapies
Electrochemical sensors for in situ monitoring of reactive species during cold atmospheric plasma-based therapies

References

  1. Laroussi, M. et al. Low-temperature plasma for biology, hygiene, and medicine: perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 6, 127–157 (2022).

    Google Scholar 

  2. Stratmann, B. et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial. JAMA Netw Open 3, e2010411 (2020).

  3. Von Woedtke, T., Laroussi, M. & Gherardi, M. Foundations of plasmas for medical applications. Plasma Sources Sci. Technol. 31, 054002 (2022).

  4. Graves, D. B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D 45, https://doi.org/10.1088/0022-3727/45/26/263001 (2012).

  5. Sen, C. K. & Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta 1780, 1348–1361 (2008).

  6. Dunnill, C. et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14, 89–96 (2017).

    Google Scholar 

  7. Lynn, S. A., MacGearailt, N. & Ringwood, J. V. Real-time virtual metrology and control for plasma etch. J. Process Control 22, 666–676 (2012).

    Google Scholar 

  8. Ma, L. et al. Cold Atmospheric Plasma for Burn Healing in Mice. In IEEE Transactions on Radiation and Plasma Medical Sciences 1–1 (IEEE, 2025)

  9. Woelfel, C. et al. Control-oriented plasma modeling and controller design for reactive sputtering. IFAC J. Syst. Control 16, 100142 (2021).

  10. Goodlin, B. E., Boning, D. S. & Sawin, H. H. Quantitative analysis and comparison of endpoint detection based on multiple wavelength analysis. In Proc. 201st Meeting of the Electrochemical Society, International Symposium on Plasma Processing XIV, Abs Vol. 415 1–30 (2002).

  11. Hirobe, K. & Tsuchimoto, T. End point detection in plasma etching by optical emission spectroscopy. J. Electrochem. Soc. 127, 234 (1980)

  12. Cho, K., Shao, K. & Mesbah, A. Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts. Comput. Chem. Eng. 185, 108653 (2024).

  13. Gidon, D., Pei, X., Bonzanini, A. D., Graves, D. B. & Mesbah, A. Machine learning for real-time diagnostics of cold atmospheric plasma sources. IEEE Trans. Radiat. Plasma Med. Sci. 3, 597–605 (2019).

    Google Scholar 

  14. Gidon, D. et al. Data-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing. Control Eng. Pr. 109, 104725 (2021).

    Google Scholar 

  15. Bonzanini, A. D., Paulson, J. A., Graves, D. B. & Mesbah, A. Toward safe dose delivery in plasma medicine using projected neural network-based fast approximate NMPC. In IFAC-PapersOnLine vol. 53, 5279–5285 (Elsevier B.V., 2020).

  16. Jablonowski, H. et al. Characterization and comparability study of a series of miniaturized neon plasma jets. J. Phys. D Appl. Phys. 57, 195202 (2024).

  17. Copeland, A. & Lytle, D. A. Measuring the oxidation-reduction potential of important oxidants in drinking water. J. Am. Water Works Assoc. 106, 10–20 (2014).

    Google Scholar 

  18. Ercan, U. K., Özdemir, G. D., Özdemir, M. A. & Güren, O. Plasma medicine: The era of artificial intelligence. Plasma Processes Polym. 20, e2300066 (2023).

  19. Giannoudi, L., Piletska, E. V. & Piletsky, S. A. Development of biosensors for the detection of hydrogen peroxide. In Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices 175–191 (Springer US, Boston, MA, 2006) https://doi.org/10.1007/978-0-387-36672-2_16.

  20. Zamfir, L. G. et al. Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sens. Actuators B Chem. 226, 525–533 (2016).

    Google Scholar 

  21. Parrilla, M., Cánovas, R. & Andrade, F. J. Enhanced potentiometric detection of hydrogen peroxide using a platinum electrode coated with nafion. Electroanalysis 29, 223–230 (2017).

    Google Scholar 

  22. Chen, X., Wu, G., Cai, Z., Oyama, M. & Chen, X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 181, 689–705 (2014).

  23. Shinwari, M. W. et al. Microfabricated reference electrodes and their biosensing applications. Sensors 10, 1679–1715 (2010).

    Google Scholar 

  24. Yonemori, Y., Takahashi, E., Ren, H., Hayashi, T. & Endo, H. Biosensor system for continuous glucose monitoring in fish. Anal. Chim. Acta 633, 90–96 (2009).

    Google Scholar 

  25. Pundir, C. S., Deswal, R. & Narwal, V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess Biosyst. Eng. 41, 313–329 (2018).

  26. Grieshaber, D., Mackenzie, R., Vörös, J. & Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 8, 1400–1458 (2008).

    Google Scholar 

  27. Søpstad, S. Flexible Electrochemical Sensor Platform. Dissertation, University of South-Eastern Norway, Horten, Norway (2019).

  28. Girard-Sahun, F. et al. Reactive oxygen species generated by cold atmospheric plasmas in aqueous solution: successful electrochemical monitoring in situ under a high voltage system. Anal. Chem. 91, 8002–8007 (2019).

    Google Scholar 

  29. Khudaish, E. A. The Electrochemical Oxidation Of Hydrogen Peroxide On Platinum Electrodes At Phosphate Buffer Solutions. Dissertation, Massey University, Palmerston North, New Zealand (1999).

  30. Lee, Y. A., Lee, I., Kim, H. J. & Kim, H. W. Smart strategic management for the cold plasma process using orp monitoring and total organic carbon correlation. Processes 12, 471 (2024).

  31. Ma, R. et al. Effect of non-thermal plasma-activated water on fruit decay and quality in Postharvest Chinese Bayberries. Food Bioproc. Tech. 9, 1825–1834 (2016).

    Google Scholar 

  32. Nasri, Z. et al. Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma. Sens. Actuators B Chem. 326, 129007 (2021).

  33. Atayik, M. C. & Çakatay, U. Redox signaling in impaired cascades of wound healing: promising approach. Mol. Biol. Rep. 50, 6927–6936 (2023).

  34. Olekson, M. P., Faulknor, R. A., Hsia, H. C., Schmidt, A. M. & Berthiaume, F. Soluble receptor for advanced glycation end products improves stromal cell-derived factor-1 activity in model diabetic environments. Adv. Wound Care 5, 527–538 (2016).

    Google Scholar 

  35. Bekeschus, S., von Woedtke, T., Emmert, S. & Schmidt, A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms: mechanisms of gas plasma-assisted wound healing. Redox Biol. 46, https://doi.org/10.1016/j.redox.2021.102116 (2021).

  36. Bjugstad, K. B. et al. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid. Med. Cell Longev. 2016, 6974257 (2016).

  37. Taheri, D. et al. Realtime RONS monitoring of cold plasma-activated aqueous media based on time-resolved phosphorescence spectroscopy. Sci. Rep. 14, 22403 (2024).

    Google Scholar 

  38. Mohamed, H. et al. Differential effect of non-thermal plasma rons on two human leukemic cell populations. Cancers 13, 2437 (2021).

  39. Sutter, J. et al. Inclusion of biological targets in the analysis of electrical characteristics of non-thermal. Plasma Disch. Plasma 6, 577–591 (2023).

    Google Scholar 

  40. Sutter, J., Bruggeman, P. J., Wigdahl, B., Krebs, F. C. & Miller, V. Manipulation of oxidative stress responses by non-thermal plasma to treat herpes simplex virus type 1 infection and disease. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24054673 (2023).

  41. Balzer, J. et al. Cold atmospheric plasma (CAP) differently affects migration and differentiation of keratinocytes via hydrogen peroxide and nitric oxide-related products. Clin. Plasma Med. 13, 1–8 (2019).

    Google Scholar 

  42. Sampaio, A. et al. Effect of the pH on the antibacterial potential and cytotoxicity of different plasma-activated liquids. Int. J. Mol. Sci. 23, 13893 (2022).

  43. Saedi, Z. et al. Stable and efficient microbubble-enhanced cold plasma activation for treatment of flowing water. Sustain. Mater. Technol. 40, e00887 (2024).

  44. Shen, J. et al. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6, 28505 (2016).

  45. Yan, D. et al. The strong cell-based hydrogen peroxide generation triggered by cold atmospheric plasma. Sci. Rep. 7, 10831 (2017).

  46. Van Der Vliet, A. & Janssen-Heininger, Y. M. W. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J. Cell Biochem. 115, 427–435 (2014).

    Google Scholar 

  47. Stapelmann, K., Gershman, S. & Miller, V. Plasma-liquid interactions in the presence of organic matter—a perspective. J. Appl. Phys. 135, 160901 (2024).

  48. Ranieri, P. et al. GSH modification as a marker for plasma source and biological response comparison to plasma treatment. Appl. Sci. 10, 2025 (2020).

  49. Stapelmann, K., Myers, B., Quesada, M. H., Lenker, E. & Ranieri, P. J. Following O and OH in He/O2 and He/H2O gas mixtures – from the gas phase through the liquid phase to modifications on a biological sample. J. Phys. D Appl. Phys. 54, 434003 (2021).

  50. Commission, I. E. Medical electrical equipment-Part 1: general requirements for basic safety and essential performance. IEC 60601-1, 2005 (2005).

    Google Scholar 

  51. Hahn, V., Brandenburg, R. & von Woedtke, T. DIN SPEC 91315: a first attempt to implement mandatory test protocols for the characterization of plasma medical devices. In Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application (eds. Metelmann, H.-R., von Woedtke, T. & Weltmann, K.-D.) 511–516 (Springer International Publishing, Cham, 2018) https://doi.org/10.1007/978-3-319-67627-2_35.

  52. Rajasekaran, P. et al. Characterization of dielectric barrier discharge (DBD) on mouse and histological evaluation of the plasma-treated tissue. Plasma Process. Polym. 8, 246–255 (2011).

    Google Scholar 

  53. Rajasekaran, P. et al. Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: Investigation through plasma characterization and simulation of surface irradiation. Plasma Process. Polym. 7, 665–675 (2010).

    Google Scholar 

  54. Komkova, M. A. et al. Pulse power generation chronoamperometry as an advanced readout for (bio)sensors: application for noninvasive diabetes monitoring. Anal. Chem. 95, 7528–7535 (2023).

    Google Scholar 

  55. de Oliveira, F. M., Da Silva, L. M. & dos Santos, W. T. P. Double-pulse chronoamperometry using short times for the kinetic study of simple quasi-reversible electrochemical reactions at low overpotentials. J. Electroanal. Chem. 848, 113291 (2019).

  56. Boukamp, P. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771 (1988).

    Google Scholar 

Download references