References
-
Kariuki, S. Global burden of antimicrobial resistance and forecasts to 2050. Lancet 404, 1172–1173 (2024).
-
Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect. Control Hospital Epidemiol 41, 1–18 (2020).
-
Azad, M. A. & Patel, R. Practical guidance for clinical microbiology laboratories: microbiologic diagnosis of implant-associated infections. Clin. Microbiol. Rev. 37, e0010423 (2024).
-
Martin, K. E. & García, A. J. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 133, 4–16 (2021).
-
Gristina, A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237, 1588–1595 (1987).
-
Salthouse, D., Novakovic, K., Hilkens, C. M. U. & Ferreira, A. M. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomater 155, 1–18 (2023).
-
Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).
-
Ul Haq, I., Khan, T. A. & Krukiewicz, K. Etiology, pathology, and host-impaired immunity in medical implant-associated infections. J. Infect. Public Health 17, 189–203 (2024).
-
Sokhi, U. K. et al. Immune response to persistent Staphyloccocus Aureus periprosthetic joint infection in a mouse tibial implant model. J. Bone Miner. Res. 37, 577–594 (2022).
-
Schmidmaier, G., Lucke, M., Wildemann, B., Haas, N. P. & Raschke, M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37, S105–S112 (2006).
-
Parmanik, A. et al. Current treatment strategies against multidrug-resistant bacteria: a review. Curr. Microbiol. 79, 388 (2022).
-
Qiu, Y., Zhang, N., An, Y. H. & Wen, X. Biomaterial strategies to reduce implant-associated infections. Int. J. Artif. Organs 30, 828–841 (2007).
-
Dini, C. et al. Progress in designing therapeutic antimicrobial hydrogels targeting implant-associated infections: paving the way for a sustainable platform applied to biomedical devices. Adv. Healthc. Mater. 14, 2402926 (2025).
-
Amin Yavari, S., Castenmiller, S. M., van Strijp, J. A. G. & Croes, M. Combating implant infections: shifting focus from bacteria to host. Adv. Mater. 32, 2002962 (2020).
-
Bazaka, K., Jacob, M. V., Crawford, R. J. & Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 95, 299–311 (2012).
-
Li, S. et al. Advancement in smart bone implants: the latest multifunctional strategies and synergistic mechanisms for tissue repair and regeneration. Bioact. Mater. 51, 333–382 (2025).
-
Yang, D. et al. Nanotherapeutics with immunoregulatory functions for the treatment of bacterial infection. Biomater. Res. 27, 73 (2023).
-
Dhaliwal, J. S. et al. Microbial biofilm decontamination on dental implant surfaces: a mini review. Front. Cell Infect. Microbiol. 11, 736186 (2021).
-
Oliva, A. et al. Challenges in the microbiological diagnosis of implant-associated infections: a summary of the current knowledge. Front. Microbiol. 12, 750460 (2021).
-
Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L. & Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16, 247–276 (2014).
-
Trindade, R., Albrektsson, T., Tengvall, P. & Wennerberg, A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin. Implant Dent. Relat. Res. 18, 192–203 (2016).
-
Li, J. et al. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact. Mater. 22, 404–422 (2023).
-
Klopfleisch, R. & Jung, F. The pathology of the foreign body reaction against biomaterials. J. Biomed. Mater. Res. Part A 105, 927–940 (2017).
-
Gorbet, M. B. & Sefton, M. V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25, 5681–5703 (2004).
-
Wilson, C. J., Clegg, R. E., Leavesley, D. I. & Pearcy, M. J. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11, 1–18 (2005).
-
Balabiyev, A. et al. Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 277, 121087 (2021).
-
Yang, D. et al. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials. Biomaterials 34, 5747–58 (2013).
-
Godwin, J.W., Pinto, A.R. & Rosenthal, N.A. Seminars in Cell & Developmental Biology Vol. 61 71–79 (Elsevier, 2017).
-
Al-Saffar, N., Iwaki, H. & Revell, P. A. Direct activation of mast cells by prosthetic biomaterial particles. J. Mater. Sci. Mater. Med. 9, 849–853 (1998).
-
Avula, M. N., Rao, A. N., McGill, L. D., Grainger, D. W. & Solzbacher, F. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model. Acta Biomater 10, 1856–1863 (2014).
-
Ozpinar, E. W., Frey, A. L., Cruse, G. & Freytes, D. O. Mast cell-biomaterial interactions and tissue repair. Tissue Eng. Part B Rev 27, 590–603 (2021).
-
Tecchio, C. & Cassatella, M. A. Neutrophil-derived chemokines on the road to immunity. Semin. Immunol. 28, 119–128 (2016).
-
Scapini, P. et al. The neutrophil as a cellular source of chemokines. Immunol. Rev. 177, 195–203 (2000).
-
Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31, 81–110 (2001).
-
Maduka, C. V. et al. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat. Biomed. Eng. 8, 1308–1321 (2024).
-
Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).
-
Mohiuddin, M., Pan, H. A., Hung, Y. C. & Huang, G. S. Control of growth and inflammatory response of macrophages and foam cells with nanotopography. Nanoscale Res. Lett. 7, 394 (2012).
-
Chang, S., Popowich, Y., Greco, R. S. & Haimovich, B. Neutrophil survival on biomaterials is determined by surface topography. J. Vasc. Surg. 37, 1082–1090 (2003).
-
Williams, D. F. The plasticity of biocompatibility. Biomaterials 296, 122077 (2023).
-
Soehnlein, O., Lindbom, L. & Weber, C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114, 4613–4623 (2009).
-
Guilliams, M., Mildner, A. & Yona, S. Developmental and functional heterogeneity of monocytes. Immunity 49, 595–613 (2018).
-
Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).
-
Sprangers, S., de Vries, T. J. & Everts, V. Monocyte heterogeneity: consequences for monocyte-derived immune cells. J. Immunol. Res. 2016, 1475435 (2016).
-
Krieger, J. R. et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77, 280–290 (2016).
-
Mamilos, A. et al. Macrophages: from simple phagocyte to an integrative regulatory cell for inflammation and tissue regeneration-a review of the literature. Cells 12, 276 (2023).
-
Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).
-
Li, J., Jiang, X., Li, H., Gelinsky, M. & Gu, Z. Tailoring materials for modulation of macrophage fate. Adv. Mater. 33, e2004172 (2021).
-
Moore, E. M. & West, J. L. Harnessing macrophages for vascularization in tissue engineering. Ann. Biomed. Eng. 47, 354–365 (2019).
-
Du, Q. et al. Targeting macrophage polarization for reinstating homeostasis following tissue damage. Int. J. Mol. Sci. 25, 7278 (2024).
-
Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).
-
Tarique, A. A. et al. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol. 53, 676–688 (2015).
-
Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6, 13 (2014).
-
Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737–746 (2010).
-
Castanheira, F. V. S. & Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 2178–2185 (2019).
-
Morandini, L. et al. Reduction of neutrophil extracellular traps accelerates inflammatory resolution and increases bone formation on titanium implants. Acta Biomater 166, 670–684 (2023).
-
Fetz, A. E. & Bowlin, G. L. Neutrophil extracellular traps: inflammation and biomaterial preconditioning for tissue engineering. Tissue Eng. Part B Rev 28, 437–450 (2022).
-
Kizhakkedathu, J. N. & Conway, E. M. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet. Blood 139, 1987–1998 (2022).
-
Shanbhag, A., Yang, J., Lilien, J. & Black, J. Decreased neutrophil respiratory burst on exposure to cobalt-chrome alloy and polystyrene in vitro. J. Biomed. Mater. Res. 26, 185–195 (1992).
-
Brodbeck, W. G. et al. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc. Natl. Acad. Sci. USA 99, 10287–10292 (2002).
-
McNally, A. K. & Anderson, J. M. Macrophage fusion and multinucleated giant cells of inflammation. Adv. Exp. Med. Biol. 713, 97–111 (2011).
-
Stewart, C. L., Hook, A. L., Zelzer, M., Marlow, M. & Piccinini, A. M. Cellular and microenvironmental cues that promote macrophage fusion and foreign body response. Front. Immunol. 15, 1411872 (2024).
-
Ahmadzadeh, K., Vanoppen, M., Rose, C. D., Matthys, P. & Wouters, C. H. Multinucleated giant cells: current insights in phenotype, biological activities, and mechanism of formation. Front. Cell Dev. Biol. 10, 873226 (2022).
-
Cai, F., Jiang, B. & He, F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater. 188, 1–26 (2024).
-
Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).
-
Lo Schiavo, A., Ruocco, E., Russo, T. & Brancaccio, G. Locus minoris resistentiae: an old but still valid way of thinking in medicine. Clin. Dermatol. 32, 553–556 (2014).
-
Schoberleitner, I. et al. SMI-capsular fibrosis and biofilm dynamics: molecular mechanisms, clinical implications, and antimicrobial approaches. Int. J. Mol. Sci. 25, 11675 (2024).
-
Donlan, R. M. Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277–281 (2001).
-
Bouhrour, N., Nibbering, P. H. & Bendali, F. Medical device-associated biofilm infections and multidrug-resistant pathogens. Pathogens 13, 393 (2024).
-
Zhang, S. et al. Immunomodulatory biomaterials against bacterial infections: progress, challenges, and future perspectives. Innovation 4, 100503 (2023).
-
Vishwakarma, A. et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol 34, 470–482 (2016).
-
Gristina, A. G., Naylor, P. & Myrvik, Q. Infections from biomaterials and implants: a race for the surface. Med. Prog. Technol. 14, 205–224 (1988).
-
Shiels, S. M., Mangum, L. H. & Wenke, J. C. Revisiting the “race for the surface” in a pre-clinical model of implant infection. Eur. Cell Mater. 39, 77–95 (2020).
-
Miramini, S. et al. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J. Mech. Behav. Biomed. Mater. 103, 103544 (2020).
-
Wagner, C. & Hänsch, G.M. Mechanisms of Bacterial Colonization of Implants and Host Response, in A Modern Approach to Biofilm-Related Orthopaedic Implant Infections: Advances in Microbiology, Infectious Diseases and Public Health, Vol. 5 (ed Drago, L.) 15–27 (Springer International Publishing, Cham, 2017).s
-
Rather, M. A., Gupta, K. & Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 52, 1701–1718 (2021).
-
Subbiahdoss, G., Kuijer, R., Grijpma, D. W., van der Mei, H. C. & Busscher, H. J. Microbial biofilm growth vs. tissue integration:“the race for the surface” experimentally studied. Acta Biomater 5, 1399–1404 (2009).
-
Mao, Y. & Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24, 389–399 (2005).
-
Kline, K. A., Fälker, S., Dahlberg, S., Normark, S. & Henriques-Normark, B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5, 580–592 (2009).
-
Carniello, V., Peterson, B. W., van der Mei, H. C. & Busscher, H. J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci 261, 1–14 (2018).
-
Zhao, A., Sun, J. & Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell Infect. Microbiol. 13, 1137947 (2023).
-
Bos, R., van der Mei, H. C. & Busscher, H. J. Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230 (1999).
-
Garcı́a, A. J. & Boettiger, D. Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials 20, 2427–2433 (1999).
-
Stones, D. H. & Krachler, A. M. Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them. Int. J. Mol. Sci. 16, 2626–2640 (2015).
-
Patti, J. M., Allen, B. L., McGavin, M. J. & Höök, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 585–617 (1994).
-
Bowden, M. G. et al. Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J. Biol. Chem. 283, 638–647 (2008).
-
Proft, T. & Baker, E. Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease. Cell. Mol. Life Sci. 66, 613–635 (2009).
-
Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. & Grandi, G. Pili in gram-positive pathogens. Nat. Rev. Microbiol. 4, 509–519 (2006).
-
Heilmann, C., Hussain, M., Peters, G. & Götz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24, 1013–1024 (1997).
-
Bose, J. L., Lehman, M. K., Fey, P. D. & Bayles, K. W. Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS ONE 7, e42244 (2012).
-
Paganelli, F. L. et al. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio 4, e00154 (2013).
-
Biswas, R. et al. Activity of the major staphylococcal autolysin Atl. FEMS Microbiol. Lett. 259, 260–268 (2006).
-
Stinemetz, E. K. et al. Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation. PLoS ONE 12, e0186706 (2017).
-
Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369 (2010).
-
Bjarnsholt, T., Høiby, N., Donelli, G., Imbert, C. & Försberg, Å. Understanding biofilms–are we there yet? FEMS Immunol. Med. Microbiol. 65, 125–126 (2012).
-
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28, 668–681 (2020).
-
Arciola, C. R., Campoccia, D., Ravaioli, S. & Montanaro, L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front. Cell Infect. Microbiol. 5, 7 (2015).
-
Nguyen, H. T. T., Nguyen, T. H. & Otto, M. The staphylococcal exopolysaccharide PIA – Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 18, 3324–3334 (2020).
-
Sabaté Brescó, M. et al. Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front. Microbiol. 8, 1401 (2017).
-
Xia, G., Kohler, T. & Peschel, A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300, 148–154 (2010).
-
Le, K. Y., Dastgheyb, S., Ho, T. V. & Otto, M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front. Cell Infect. Microbiol. 4, 167 (2014).
-
Schwartz, K., Syed, A. K., Stephenson, R. E., Rickard, A. H. & Boles, B. R. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8, e1002744 (2012).
-
Srivastava, D. & Waters, C. M. A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J. Bacteriol. 194, 4485–4493 (2012).
-
Oppenheimer-Shaanan, Y., Steinberg, N. & Kolodkin-Gal, I. Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol 21, 594–601 (2013).
-
Sikdar, R. & Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev. Anti Infect. Ther. 18, 1221–1233 (2020).
-
Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E. & Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol. 104, 1871–1881 (2020).
-
Missiakas, D. & Winstel, V. Selective host cell death by Staphylococcus aureus: a strategy for bacterial persistence. Front. Immunol. 11, 621733 (2020).
-
Thakur, A., Mikkelsen, H. & Jungersen, G. Intracellular pathogens: host immunity and microbial persistence strategies. J. Immunol. Res. 2019, 1356540 (2019).
-
Mohamed, W. et al. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival. Eur. Cell Mater. 28, 258–268 (2014).
-
Campoccia, D. et al. Orthopedic implant infections: Incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J. Biomed. Mater. Res. A 104, 788–801 (2016).
-
Spaan, A. N., van Strijp, J. A. G. & Torres, V. J. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 15, 435–447 (2017).
-
Melehani, J. H., James, D. B., DuMont, A. L., Torres, V. J. & Duncan, J. A. Staphylococcus aureus Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular. PLoS Pathog 11, e1004970 (2015).
-
Scherr, T. D. et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocirdin AB and alpha-toxin. mBio 6, e01021–15 (2015).
-
Thurlow, L. R. et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585–6596 (2011).
-
Hanke, M. L., Heim, C. E., Angle, A., Sanderson, S. D. & Kielian, T. Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J. Immunol. 190, 2159–2168 (2013).
-
Heim, C. E. et al. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. J. Immunol. 194, 3861–3872 (2015).
-
Abdul Hamid, A. I. et al. Differential early in vivo dynamics and functionality of recruited polymorphonuclear neutrophils after infection by planktonic or biofilm Staphylococcus aureus. Front. Microbiol. 12, 728429 (2021).
-
Gries, C. M. & Kielian, T. Staphylococcal biofilms and immune polarization during prosthetic joint infection. JAAOS 25, S20–S24 (2017).
-
Bertrand, B. P., Heim, C. E., Koepsell, S. A. & Kielian, T. Elucidating granulocytic myeloid-derived suppressor cell heterogeneity during Staphylococcus aureus biofilm infection. J. Leukoc. Biol. 115, 620–632 (2024).
-
Meyle, E. et al. Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif. Organs 33, 608–620 (2010).
-
Cavallo, I. et al. Bacterial biofilm in chronic wounds and possible therapeutic approaches. Biology 13, 109 (2024).
-
Gaida, M. et al. Polymorphonuclear neutrophils in osteomyelitis: link to osteoclast generation and bone resorption. Eur. J. Inflamm. 10, 413–426 (2012).
-
Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).
-
Wilde, A. D. et al. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLoS Pathog 11, e1005341 (2015).
-
Li, M., Yu, J., Guo, G. & Shen, H. Interactions between macrophages and biofilm during Staphylococcus aureus-associated implant infection: difficulties and solutions. J. Innate Immun. 15, 499–515 (2023).
-
Menousek, J. et al. Transcriptional profiling of phagocytic leukocytes and microglia reveals a critical role for reactive oxygen species in biofilm containment during Staphylococcus aureus craniotomy infection. J. Immunol. 209, 1973–1986 (2022).
-
Horn, C. M. et al. Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/HIF1a axis. J. Clin. Invest. 134, e174051 (2024).
-
Pomeyie, K. et al. Macrophage immunometabolism dysregulation and inflammatory disorders. Biomed. Pharmacother. 188, 118142 (2025).
-
Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).
-
Yamada, K. J. et al. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathog 16, e1008354 (2020).
-
Bertrand, B. P. et al. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infect. Immun. 92, e00474–00423 (2024).
-
Bosch, M. E. et al. Staphylococcus aureus ATP synthase promotes biofilm persistence by influencing innate immunity. mBio 11, e01581–20 (2020).
-
Heim, C. E. et al. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5, 1271–1284 (2020).
-
Wang, Y. et al. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection. J. Orthop. Res. 38, 1800–1809 (2020).
-
Hanke, M. L., Angle, A. & Kielian, T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS ONE 7, e42476 (2012).
-
Van Roy, Z., Kak, G., Fallet, R. W. & Kielian, T. Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection. J. Neuroinflammation 22, 46 (2025).
-
Trinchieri, G. Proinflammatory and immunoregulatory functions of interleukin-12. Int. Rev. Immunol. 16, 365–396 (1998).
-
Prabhakara, R. et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect. Immun. 79, 5010–5018 (2011).
-
Heim, C. E., Vidlak, D. & Kielian, T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J. Leukoc. Biol. 98, 1003–1013 (2015).
-
Gallo, J., Holinka, M. & Moucha, C. S. Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 15, 13849–13880 (2014).
-
Linklater, D. P. et al. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 19, 8–22 (2021).
-
Fröjd, V. et al. In situ analysis of multispecies biofilm formation on customized titanium surfaces. Mol. Oral. Microbiol. 26, 241–252 (2011).
-
Arnold, J. & Bailey, G. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult. Sci. 79, 1839–1845 (2000).
-
Medilanski, E., Kaufmann, K., Wick, L. Y., Wanner, O. & Harms, H. Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 18, 193–203 (2002).
-
Truong, V. K. et al. Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Appl. Microbiol. Biotechnol. 99, 6831–6840 (2015).
-
Vasudevan, R., Kennedy, A. J., Merritt, M., Crocker, F. H. & Baney, R. H. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surf. B Biointerfaces 117, 225–232 (2014).
-
Gu, H. et al. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography. Sci. Rep. 6, 29516 (2016).
-
Vadillo-Rodríguez, V., Guerra-García-Mora, A. I., Perera-Costa, D., Gónzalez-Martín, M. L. & Fernández-Calderón, M. C. Bacterial response to spatially organized microtopographic surface patterns with nanometer scale roughness. Colloids Surf. B Biointerfaces 169, 340–347 (2018).
-
Cheng, Y., Feng, G. & Moraru, C. I. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 10, 191 (2019).
-
Díaz, C., Schilardi, P. & de Mele, M. F. Influence of surface sub-micropattern on the adhesion of pioneer bacteria on metals. Artif. Organs 32, 292–298 (2008).
-
Díaz, C., Schilardi, P. L. & Salvarezza, R. C. & Fernández Lorenzo de Mele, M. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23, 11206–11210 (2007).
-
Hou, S., Gu, H., Smith, C. & Ren, D. Microtopographic patterns affect Escherichia coli biofilm formation on poly(dimethylsiloxane) surfaces. Langmuir 27, 2686–2691 (2011).
-
Encinas, N. et al. Submicrometer-sized roughness suppresses bacteria adhesion. ACS Appl. Mater. Interfaces 12, 21192–21200 (2020).
-
Wang, X. et al. Electrophoresis-deposited mesoporous graphitic carbon nitride surfaces with efficient bactericidal properties. ACS Appl. Bio Mater 3, 2255–2262 (2020).
-
Hu, W. et al. Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010).
-
Akhavan, O. & Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010).
-
Liu, S. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).
-
Deng, Y., Sun, M. & Shaevitz, J. W. Measuring peptidoglycan elasticity and stress-stiffening of live bacterial cells. Biophys. J. 100, 514a–515a (2011).
-
Truong, V. K. et al. The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces. Appl. Microbiol. Biotechnol. 101, 4683–4690 (2017).
-
Jahed, Z. et al. Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials 35, 9363–9371 (2014).
-
Pham, V. T. et al. “Race for the surface”: eukaryotic cells can win. ACS Appl. Mater. Interfaces 8, 22025–22031 (2016).
-
Luo, Y. et al. Anti-infective application of graphene-like silicon nanosheets via membrane destruction. Adv. Healthc. Mater. 9, 1901375 (2020).
-
Wu, S. et al. Plasma-modified biomaterials for self-antimicrobial applications. ACS Appl. Mater. Interfaces 3, 2851–2860 (2011).
-
Hasan, J. et al. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl. Microbiol. Biotechnol. 97, 9257–9262 (2013).
-
Mainwaring, D. E. et al. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. Nanoscale 8, 6527–6534 (2016).
-
Li, X. Bactericidal mechanism of nanopatterned surfaces. Phys. Chem. Chem. Phys. 18, 1311–1316 (2016).
-
Ivanova, E. P. et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8, 2489–2494 (2012).
-
Su, Q. et al. Strategies and applications of antibacterial surface-modified biomaterials. Bioact. Mater. 53, 114–140 (2025).
-
Chen, Z. et al. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 11, 4494–4506 (2017).
-
Cloutier, M., Mantovani, D. & Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33, 637–652 (2015).
-
Ellinas, K., Tserepi, A. & Gogolides, E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review. Adv. Colloid Interface Sci 250, 132–157 (2017).
-
Salwiczek, M. et al. Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32, 82–90 (2014).
-
Song, Q. et al. Contact-killing antibacterial mechanisms of polycationic coatings: a review. Prog. Org. Coat. 188, 108214 (2024).
-
Banerjee, I., Pangule, R. C. & Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011).
-
Olmo, J. A.-D., Ruiz-Rubio, L., Pérez-Alvarez, L., Sáez-Martínez, V. & Vilas-Vilela, J. L. Antibacterial coatings for improving the performance of biomaterials. Coatings 10, 139 (2020).
-
Liu, S., Tang, J., Ji, F., Lin, W. & Chen, S. Recent advances in zwitterionic hydrogels: preparation, property, and biomedical application. Gels 8, 46 (2022).
-
Junter, G. A., Thébault, P. & Lebrun, L. Polysaccharide-based antibiofilm surfaces. Acta Biomater 30, 13–25 (2016).
-
Cui, X. et al. Bacterial inhibition and osteoblast adhesion on Ti alloy surfaces modified by poly(PEGMA-r-Phosmer) coating. ACS Appl. Mater. Interfaces 10, 23674–23681 (2018).
-
Kang, S. et al. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta Biomater 40, 70–77 (2016).
-
Shao, H. et al. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: a review. Front. Bioeng. Biotechnol. 10, 1000401 (2022).
-
Chen, Q., Liu, D., Gong, Y., Xiao, Q. & Li, Z. A. Modification of titanium surfaces via surface-initiated atom transfer radical polymerization to graft PEG-RGD polymer brushes to inhibit bacterial adhesion and promote osteoblast cell attachment. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 1225–1231 (2017).
-
Kugel, A., Stafslien, S. & Chisholm, B. J. Antimicrobial coatings produced by “tethering” biocides to the coating matrix: a comprehensive review. Prog. Org. Coat. 72, 222–252 (2011).
-
Alkhalifa, S. et al. Analysis of the destabilization of bacterial membranes by quaternary ammonium compounds: a combined experimental and computational study. ChemBioChem 21, 1510–1516 (2020).
-
Jennings, M. C., Minbiole, K. P. & Wuest, W. M. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 1, 288–303 (2015).
-
Salajkova, S. et al. Wide-antimicrobial spectrum of picolinium salts. Molecules 25, 2254 (2020).
-
Sun, Z. et al. The overview of antimicrobial peptide-coated implants against oral bacterial infections. Aggregate 4, e309 (2023).
-
Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P. & Martins, M. C. L. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7, 1431–1440 (2011).
-
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).
-
Chen, J. et al. Antimicrobial titanium surface via click-immobilization of peptide and its in vitro/vivo activity. ACS Biomater. Sci. Eng. 5, 1034–1044 (2019).
-
Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).
-
Iqbal, Z., Lai, E. P. C. & Avis, T. J. Antimicrobial effect of polydopamine coating on Escherichia coli. J. Mater. Chem. 22, 21608–21612 (2012).
-
Fu, Y. et al. Polydopamine antibacterial materials. Mater. Horiz. 8, 1618–1633 (2021).
-
Su, L., Yu, Y., Zhao, Y., Liang, F. & Zhang, X. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci. Rep. 6, 24420 (2016).
-
Rienzo, M. A. D. et al. Antimicrobial properties of sophorolipids produced by Candida Bombicola ATCC 22214 against gram positive and Gram-negative bacteria. N. Biotechnol. 31, S66–S67 (2014).
-
Elshikh, M. et al. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J. Appl. Microbiol. 123, 1111–1123 (2017).
-
Tambone, E. et al. Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study. BMC Oral. Health 21, 49 (2021).
-
Holinka, J., Pilz, M., Kubista, B., Presterl, E. & Windhager, R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Jt. J. 95-b, 678–682 (2013).
-
Tsuchiya, H. et al. Innovative antimicrobial coating of titanium implants with iodine. J. Orthop. Sci. 17, 595–604 (2012).
-
Sasamoto, T. et al. Antibacterial fluorinated diamond-like carbon coating promotes osteogenesis—comparison with titanium alloy. Appl. Sci. 11, 9451 (2021).
-
Zhou, J., Li, B. & Han, Y. F-doped TiO2 microporous coating on titanium with enhanced antibacterial and osteogenic activities. Sci. Rep. 8, 17858 (2018).
-
Tran, P. A. et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int. J. Nanomed. 14, 4613–4624 (2019).
-
Xu, W., Lin, Z., Cortez-Jugo, C., Qiao, G. G. & Caruso, F. Antimicrobial phenolic materials: from assembly to function. Angew. Chem. Int. Ed. 64, e202423654 (2025).
-
Polaquini, C. R. et al. Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption. Bioorg. Chem. 109, 104668 (2021).
-
Caturla, N., Vera-Samper, E., Villalaín, J., Mateo, C. R. & Micol, V. The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic. Biol. Med. 34, 648–662 (2003).
-
Kushram, P., Majumdar, U. & Bose, S. Hydroxyapatite coated titanium with curcumin and epigallocatechin gallate for orthopedic and dental applications. Biomater. Adv. 155, 213667 (2023).
-
Grainger, D. W. Controlled-release and local delivery of therapeutic antibodies. Expert Opin. Biol. Ther. 4, 1029–1044 (2004).
-
Rojas, I. A., Slunt, J. B. & Grainger, D. W. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J. Control Release 63, 175–189 (2000).
-
Chen, X., Zhou, J., Qian, Y. & Zhao, L. Antibacterial coatings on orthopedic implants. Mater. Today Bio 19, 100586 (2023).
-
Cai, J. & Liu, R. Introduction to antibacterial biomaterials. Biomater. Sci. 8, 6812–6813 (2020).
-
Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).
-
Yang, N. et al. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact. Mater. 43, 48–66 (2025).
-
Huang, Q. et al. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids Surf. B Biointerfaces 170, 242–250 (2018).
-
Zhao, D. W. et al. Calcium-zinc phosphate chemical conversion coating facilitates the osteointegration of biodegradable zinc alloy implants by orchestrating macrophage phenotype. Adv. Health. Mater. 12, e2202537 (2023).
-
Yang, K. et al. Iron metabolism interference-enhanced sonodynamic therapy of methicillin-resistant Staphylococcus aureus-induced osteomyelitis by CaCO3-Ga-PPIX@PEG nanospheres. Nano Today 56, 102299 (2024).
-
Haidari, H. et al. Ultrasmall AgNP-impregnated biocompatible hydrogel with highly effective biofilm elimination properties. ACS Appl. Mater. Interfaces 12, 41011–41025 (2020).
-
Zawadzka, K. et al. Surface area or diameter – which factor really determines the antibacterial activity of silver nanoparticles grown on TiO2 coatings? N. J. Chem. 38, 3275–3281 (2014).
-
Jia, Z. et al. Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V Scaffold for repair of infective bone defects. ACS Biomater. Sci. Eng. 5, 244–261 (2019).
-
Sobolev, A. et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles. ACS Appl Mater. Interfaces 11, 39534–39544 (2019).
-
Jacobs, A., Renaudin, G., Forestier, C., Nedelec, J. M. & Descamps, S. Biological properties of copper-doped biomaterials for orthopedic applications: a review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater 117, 21–39 (2020).
-
Vincent, M., Hartemann, P. & Engels-Deutsch, M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health 219, 585–591 (2016).
-
Song, X. et al. Cu-decorated graphene oxide coatings with enhanced antibacterial activity for surface modification of implant. Mater. Res. Bull. 141, 111345 (2021).
-
Wu, H. et al. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings. Appl. Surf. Sci. 308, 43–49 (2014).
-
Hadidi, M. et al. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf. Coat. Technol. 321, 171–179 (2017).
-
Wen, Z. et al. Mesoporous TiO(2) coatings regulate ZnO nanoparticle loading and Zn2+ release on titanium dental implants for sustained osteogenic and antibacterial activity. ACS Appl. Mater. Interfaces 15, 15235–15249 (2023).
-
Jin, G. et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf. B Biointerfaces 117, 158–165 (2014).
-
Hu, H. et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater 8, 904–915 (2012).
-
Li, F., Liu, F., Huang, K. & Yang, S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front. Bioeng. Biotechnol. 10, 827960 (2022).
-
Wang, M. Q. et al. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J. Mater. Chem. B 9, 4735–4745 (2021).
-
Cochis, A., Azzimonti, B., Chiesa, R., Rimondini, L. & Gasik, M. Metallurgical gallium additions to titanium alloys demonstrate a strong time-increasing antibacterial activity without any cellular toxicity. ACS Biomater. Sci. Eng. 5, 2815–2820 (2019).
-
Anggård, E. Nitric oxide: mediator, murderer, and medicine. Lancet 343, 1199–1206 (1994).
-
Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).
-
Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 101, 4003–4008 (2004).
-
Schairer, D. O., Chouake, J. S., Nosanchuk, J. D. & Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3, 271–279 (2012).
-
Hou, Z. et al. Nitric oxide-mediated dual-functional smart titanium implant coating for antibacterial and osseointegration promotion in implant-associated infections. Adv. Healthc. Mater. 14, 2500997 (2025).
-
Su, Z. et al. Bioresponsive nano-antibacterials for H2S-sensitized hyperthermia and immunomodulation against refractory implant-related infections. Sci. Adv. 8, eabn1701 (2022).
-
Wu, S. et al. CO-loaded hemoglobin/EGCG nanoparticles functional coatings for inflammation modulation of vascular implants. Regener. Biomater. 12, rbae148 (2024).
-
Zhou, M. et al. Interfacial delivery of carbon monoxide via smart titanium implant coating for enhanced soft tissue integration with switchable antibacterial and immunomodulatory properties. Bioact. Mater. 40, 318–333 (2024).
-
VanEpps, J. S. & Younger, J. G. Implantable device-related infection. Shock 46, 597–608 (2016).
-
Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 276, 111–119 (2014).
-
Lesens, O. et al. Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1949–1956 (2018).
-
Mosaei, H. & Zenkin, N. Inhibition of RNA polymerase by rifampicin and rifamycin-like molecules. EcoSal Plus 9, https://doi.org/10.1128/ecosalplus.ESP-0017-2019 (2020).
-
Zimmerli, W. & Sendi, P. Role of rifampin against Staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob. Agents Chemother. 63, e01746–18 (2019).
-
Mei, L., Zhang, Y., Wang, K., Chen, S. & Song, T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater. Today Bio 29, 101354 (2024).
-
Nestoros, E., Sharma, A., Kim, E., Kim, J. S. & Vendrell, M. Smart molecular designs and applications of activatable organic photosensitizers. Nat. Rev. Chem. 9, 46–60 (2025).
-
Priyadarshi, N. et al. Advances in photothermal therapy for cancer and bacterial cells ablation using various nanomaterials. Adv. Colloid Interface Sci 342, 103541 (2025).
-
Wang, X. et al. Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms. J. Nanobiotechnol. 23, 40 (2025).
-
Yu, Y.-L. et al. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil. Med. Res. 10, 21 (2023).
-
Xie, J. et al. Supramolecular nanoplatform for biofilm eradication and anti-inflammatory by phototherapies and macrophage repolarization. Adv. Healthc. Mater. 14, 2501162 (2025).
-
Hu, J. et al. Surface modification of titanium substrate via combining photothermal therapy and quorum-sensing-inhibition strategy for improving osseointegration and treating biofilm-associated bacterial infection. Bioact. Mater. 18, 228–241 (2022).
-
Maleki, A. et al. Titanium-based nanoarchitectures for sonodynamic therapy-involved multimodal treatments. Small 19, e2206253 (2023).
-
Williams, R. G. & Pitt, W. G. In vitro response of Escherichia coli to antibiotics and ultrasound at various insonation intensities. J. Biomater. Appl. 12, 20–30 (1997).
-
Qian, Z., Sagers, R. D. & Pitt, W. G. Investigation of the mechanism of the bioacoustic effect. J. Biomed. Mater. Res. 44, 198–205 (1999).
-
Duco, W., Grosso, V., Zaccari, D. & Soltermann, A. T. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications. Methods 109, 141–148 (2016).
-
Dong, Y. et al. Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm. Int. J. Med. Microbiol. 307, 321–328 (2017).
-
Qian, X., Zheng, Y. & Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv. Mater. 28, 8097–8129 (2016).
-
Smith, N. B., Temkin, J. M., Shapiro, F. & Hynynen, K. Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med. Biol. 27, 1427–1433 (2001).
-
Guan, S. et al. Metastructure “trap” coating by acoustic confinement effect for antibacterial sonothermal therapy. Adv. Funct. Mater. 34, 2316093 (2024).
-
Guan, S. et al. Metainterface heterostructure enhances sonodynamic therapy for disrupting secondary biofilms. ACS Nano 18, 15114–15129 (2024).
-
Su, Z. et al. Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections. Nat. Commun. 15, 8058 (2024).
-
Xiu, W. et al. Ultrasound-stimulated “exocytosis” by cell-like microbubbles enhances antibacterial species penetration and immune activation against implant infection. Adv. Sci. 11, e2307048 (2024).
-
Zhang, C. et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. Engl. 55, 2101–2106 (2016).
-
Jia, C., Guo, Y. & Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18, e2103868 (2022).
-
Pan, T. et al. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. J. Hazard Mater. 435, 128996 (2022).
-
Wang, Z. et al. Oxygen-independent sulfate radical and Fe2+-modified implants for fast sterilization and osseointegration of infectious bone defects. ACS Nano 19, 18804–18823 (2025).
-
Guo, G. et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano 14, 13391–13405 (2020).
-
Zhou, H. et al. Ultrasensitive chemodynamic therapy: bimetallic peroxide triggers high pH-activated, synergistic effect/H2O2 self-supply-mediated cascade Fenton chemistry. Adv. Health. Mater. 10, e2002126 (2021).
-
Liu, Y., Chi, S., Cao, Y. & Liu, Z. Glutathione-responsive biodegradable core–shell nanoparticles that self-generate H2O2 and deliver doxorubicin for chemo–chemodynamic therapy. ACS Appl. Nano Mater 5, 2592–2602 (2022).
-
Hedayatnasab, Z., Abnisa, F. & Daud, W. M. A. W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017).
-
Alumutairi, L., Yu, B., Filka, M., Nayfach, J. & Kim, M. H. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int. J. Hyperth. 37, 66–75 (2020).
-
Xu, C., Akakuru, O. U., Zheng, J. & Wu, A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front. Bioeng. Biotechnol. 7, 141 (2019).
-
Yang, N. et al. Magnesium implants with alternating magnetic field-enhanced hydrogen release and proton depletion for anti-infection treatment and tissue repair. Bioact. Mater. 38, 374–383 (2024).
-
Xu, Y. et al. Urchin-like Fe3O4@Bi2S3 nanospheres enable the destruction of biofilm and efficiently antibacterial activities. ACS Appl. Mater. interfaces 16, 3215–3231 (2024).
-
Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).
-
Brandquist, N. D. & Kielian, T. Immune dysfunction during S. aureus biofilm-associated implant infections: opportunities for novel therapeutic strategies. npj Biofilms Microbiomes 11, 144 (2025).
-
Van Roy, Z. & Kielian, T. Immune-based strategies for the treatment of biofilm infections. Biofilm 9, 100264 (2025).
-
Hu, Y. et al. Environment-responsive therapeutic platforms for the treatment of implant infection. Adv. Healthc. Mater. 12, e2300985 (2023).
-
Alam, F. et al. Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens. Bioelectron. 117, 818–829 (2018).
-
Abikhzer, G. et al. EANM/SNMMI guideline/procedure standard for [18F]FDG hybrid PET use in infection and inflammation in adults v2.0. Eur. J. Nucl. Med. Mol. Imaging 52, 510–538 (2025).
-
Kim, D.-H., Kim, M.S. & Hwang, J. in Design and Quality for Biomedical Technologies V, Vol. 8215 27–33 (SPIE, 2012).
-
Gil, B. et al. Wireless implantable bioelectronics with a direct electron transfer lactate enzyme for detection of surgical site infection in orthopaedics. Biosens. Bioelectron. 263, 116571 (2024).
-
Yang, K. et al. Self-adaptive antibiofilm effect and immune regulation by hollow Cu2MoS4 nanospheres for treatment of implant infections. ACS Appl. Mater. Interfaces 15, 18720–18733 (2023).
-
Han, J. et al. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J. Nanobiotechnol. 21, 277 (2023).
-
Hao, Z., Li, X., Zhang, R. & Zhang, L. Stimuli-responsive hydrogels for antibacterial applications. Adv. Healthc. Mater. 13, 2400513 (2024).
