References
-
Bornscheuer, U. & Kazlauskas, R. Hydrolases in Organic Synthesis, 2nd edn. Wiley-VCH (2006).
-
Müller, H., Terholsen, H., Godehard, S. P., Badenhorst, C. P. S. & Bornscheuer, U. T. Recent insights and future perspectives on promiscuous hydrolases/acyltransferases. ACS Catal. 11, 14906–14915 (2021).
-
Mathews, I. et al. Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46, 8969–8979 (2007).
-
Cannazza, P., Donzella, S., Pellis, A. & Contente, M. L. Mycobacterium smegmatis acyltransferase: the big new player in biocatalysis. Biotechnol. Adv. 59, 107985 (2022).
-
Jost, E. et al. Variants of the acyltransferase from Mycobacterium smegmatis enable enantioselective acyl transfer in water. ACS Catal. 10, 10500–10507 (2020).
-
Godehard, S. P., Badenhorst, C. P. S., Müller, H. & Bornscheuer, U. T. Protein engineering for enhanced acyltransferase activity, substrate scope, and selectivity of the Mycobacterium smegmatis acyltransferase MsAcT. ACS Catal. 10, 7552–7562 (2020).
-
Mestrom, L., Claessen, J. G. R. & Hanefeld, U. Enzyme-catalyzed synthesis of esters in water. ChemCatChem. 11, 2004–2010 (2019).
-
Contente, M. L., Pinto, A., Molinari, F. & Paradisi, F. Biocatalytic N-acylation of amines in water using an acyltransferase from Mycobacterium smegmatis. Adv. Synth. Catal. 360, 4814–4819 (2018).
-
von Haugwitz, G. et al. Synthesis of modified poly(vinyl alcohol)s and their degradation using an enzymatic cascade. Angew. Chem. Int. Ed. 62, e202216962 (2023).
-
Perdomo, I. C. et al. Efficient enzymatic preparation of flavor esters in water. J. Agric. Food Chem. 67, 6517–6522 (2019).
-
Carvalho, H. F., Mestrom, L., Hanefeld, U. & Pleiss, J. Beyond the chemical step: the role of substrate access in acyltransferase from Mycobacterium smegmatis. ACS Catal. 14, 10077–10088 (2024).
-
Baumert, B. et al. Promiscuous acyltransferases for ester and amide synthesis in aqueous solution. Catal. Today 442, 114925 (2024).
-
Rudzka, A., Reiter, T., Kroutil, W. & Borowiecki, P. Bienzymatic dynamic kinetic resolution of secondary alcohols by esterification/racemization in water. Angew. Chem. Int. Ed. 64, e202420133 (2025).
-
Müller, H. et al. Sequence-based prediction of promiscuous acyltransferase activity in hydrolases. Angew. Chem. Int. Ed. 59, 11607–11612 (2020).
-
Kazemi, M., Sheng, X., Kroutil, W. & Himo, F. Computational study of Mycobacterium smegmatis acyl transferase reaction mechanism and specificity. ACS Catal. 8, 10698–10706 (2018).
-
de Leeuw, N. et al. Ester synthesis in water: Mycobacterium smegmatis acyl transferase for kinetic resolutions. Adv. Synth. Catal. 360, 242–249 (2018).
-
Annunziata, F., Contente, M. L., Pinna, C., Tamborini, L. & Pinto, A. Biocatalyzed flow oxidation of tyrosol to hydroxytyrosol and efficient production of their acetate esters. Antioxidants 10, 1142 (2021).
-
Zdun, B. et al. Chemoenzymatic synthesis of optically active alcohols possessing 1,2,3,4-tetrahydroquinoline moiety employing lipases or variants of the acyltransferase from Mycobacterium smegmatis. Catalysts 12, 1610 (2022).
-
Linke, D., Lehnert, N., Nimtz, M. & Berger, R. G. An alcohol oxidase of Phanerochaete chrysosporium with a distinct glycerol oxidase activity. Enz. Microb. Technol. 61-62, 7–12 (2014).
-
Nguyen, Q.-T. et al. Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochem. 57, 6209–6218 (2018).
-
Martin, C., Trajkovic, M. & Fraaije, M. W. Production of hydroxy acids: selective double oxidation of diols by flavoprotein alcohol oxidase. Angew. Chem. Int. Ed. 59, 4869–4872 (2020).
-
Paravidino, M. & Hanefeld, U. Enzymatic acylation: assessing the greenness of different acyl donors. Green. Chem. 13, 2651–2657 (2011).
-
Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).
-
Rotsaert, F. A. J., Renganathan, V. & Gold, M. H. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochem. 42, 4049–4056 (2003).
-
Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y. & Poulos, T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Nati. Acad. Sci. 83, 3743–3745 (1986).
-
Dreveny, I., Kratky, C. & Gruber, K. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Prot. Sci. 11, 292–300 (2002).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
