Engineered alcohol oxidases catalyse transesterification in aqueous media without competing hydrolysis

engineered-alcohol-oxidases-catalyse-transesterification-in-aqueous-media-without-competing-hydrolysis
Engineered alcohol oxidases catalyse transesterification in aqueous media without competing hydrolysis

References

  1. Bornscheuer, U. & Kazlauskas, R. Hydrolases in Organic Synthesis, 2nd edn. Wiley-VCH (2006).

  2. Müller, H., Terholsen, H., Godehard, S. P., Badenhorst, C. P. S. & Bornscheuer, U. T. Recent insights and future perspectives on promiscuous hydrolases/acyltransferases. ACS Catal. 11, 14906–14915 (2021).

    Google Scholar 

  3. Mathews, I. et al. Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46, 8969–8979 (2007).

    Google Scholar 

  4. Cannazza, P., Donzella, S., Pellis, A. & Contente, M. L. Mycobacterium smegmatis acyltransferase: the big new player in biocatalysis. Biotechnol. Adv. 59, 107985 (2022).

    Google Scholar 

  5. Jost, E. et al. Variants of the acyltransferase from Mycobacterium smegmatis enable enantioselective acyl transfer in water. ACS Catal. 10, 10500–10507 (2020).

    Google Scholar 

  6. Godehard, S. P., Badenhorst, C. P. S., Müller, H. & Bornscheuer, U. T. Protein engineering for enhanced acyltransferase activity, substrate scope, and selectivity of the Mycobacterium smegmatis acyltransferase MsAcT. ACS Catal. 10, 7552–7562 (2020).

    Google Scholar 

  7. Mestrom, L., Claessen, J. G. R. & Hanefeld, U. Enzyme-catalyzed synthesis of esters in water. ChemCatChem. 11, 2004–2010 (2019).

    Google Scholar 

  8. Contente, M. L., Pinto, A., Molinari, F. & Paradisi, F. Biocatalytic N-acylation of amines in water using an acyltransferase from Mycobacterium smegmatis. Adv. Synth. Catal. 360, 4814–4819 (2018).

    Google Scholar 

  9. von Haugwitz, G. et al. Synthesis of modified poly(vinyl alcohol)s and their degradation using an enzymatic cascade. Angew. Chem. Int. Ed. 62, e202216962 (2023).

  10. Perdomo, I. C. et al. Efficient enzymatic preparation of flavor esters in water. J. Agric. Food Chem. 67, 6517–6522 (2019).

    Google Scholar 

  11. Carvalho, H. F., Mestrom, L., Hanefeld, U. & Pleiss, J. Beyond the chemical step: the role of substrate access in acyltransferase from Mycobacterium smegmatis. ACS Catal. 14, 10077–10088 (2024).

    Google Scholar 

  12. Baumert, B. et al. Promiscuous acyltransferases for ester and amide synthesis in aqueous solution. Catal. Today 442, 114925 (2024).

  13. Rudzka, A., Reiter, T., Kroutil, W. & Borowiecki, P. Bienzymatic dynamic kinetic resolution of secondary alcohols by esterification/racemization in water. Angew. Chem. Int. Ed. 64, e202420133 (2025).

    Google Scholar 

  14. Müller, H. et al. Sequence-based prediction of promiscuous acyltransferase activity in hydrolases. Angew. Chem. Int. Ed. 59, 11607–11612 (2020).

    Google Scholar 

  15. Kazemi, M., Sheng, X., Kroutil, W. & Himo, F. Computational study of Mycobacterium smegmatis acyl transferase reaction mechanism and specificity. ACS Catal. 8, 10698–10706 (2018).

    Google Scholar 

  16. de Leeuw, N. et al. Ester synthesis in water: Mycobacterium smegmatis acyl transferase for kinetic resolutions. Adv. Synth. Catal. 360, 242–249 (2018).

    Google Scholar 

  17. Annunziata, F., Contente, M. L., Pinna, C., Tamborini, L. & Pinto, A. Biocatalyzed flow oxidation of tyrosol to hydroxytyrosol and efficient production of their acetate esters. Antioxidants 10, 1142 (2021).

    Google Scholar 

  18. Zdun, B. et al. Chemoenzymatic synthesis of optically active alcohols possessing 1,2,3,4-tetrahydroquinoline moiety employing lipases or variants of the acyltransferase from Mycobacterium smegmatis. Catalysts 12, 1610 (2022).

    Google Scholar 

  19. Linke, D., Lehnert, N., Nimtz, M. & Berger, R. G. An alcohol oxidase of Phanerochaete chrysosporium with a distinct glycerol oxidase activity. Enz. Microb. Technol. 61-62, 7–12 (2014).

    Google Scholar 

  20. Nguyen, Q.-T. et al. Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochem. 57, 6209–6218 (2018).

    Google Scholar 

  21. Martin, C., Trajkovic, M. & Fraaije, M. W. Production of hydroxy acids: selective double oxidation of diols by flavoprotein alcohol oxidase. Angew. Chem. Int. Ed. 59, 4869–4872 (2020).

    Google Scholar 

  22. Paravidino, M. & Hanefeld, U. Enzymatic acylation: assessing the greenness of different acyl donors. Green. Chem. 13, 2651–2657 (2011).

    Google Scholar 

  23. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Google Scholar 

  24. Rotsaert, F. A. J., Renganathan, V. & Gold, M. H. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochem. 42, 4049–4056 (2003).

    Google Scholar 

  25. Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y. & Poulos, T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Nati. Acad. Sci. 83, 3743–3745 (1986).

    Google Scholar 

  26. Dreveny, I., Kratky, C. & Gruber, K. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Prot. Sci. 11, 292–300 (2002).

    Google Scholar 

  27. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

Download references