Engineered biosynthesis of hyaluronic acid in Corynebacterium glutamicum and green synthesis of HA-silver nanocomposites for advanced antimicrobial wound dressings

engineered-biosynthesis-of-hyaluronic-acid-in-corynebacterium-glutamicum-and-green-synthesis-of-ha-silver-nanocomposites-for-advanced-antimicrobial-wound-dressings
Engineered biosynthesis of hyaluronic acid in Corynebacterium glutamicum and green synthesis of HA-silver nanocomposites for advanced antimicrobial wound dressings

References

  1. Bloom, D. E. & Cadarette, D. Infectious disease threats in the twenty-first century: strengthening the global response. Front. Immunol. 10, 549 (2019).

    Google Scholar 

  2. Mohammed, M., Devnarain, N., Elhassan, E. & Govender, T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. Wiley Interdisciplinary Reviews: Nanomed. Nanobiotechnol. 14, e1799 (2022).

    Google Scholar 

  3. McArthur, D. B. Emerging infectious diseases. Nurs. Clin. 54, 297–311 (2019).

    Google Scholar 

  4. Vouga, M. & Greub, G. Emerging bacterial pathogens: the past and beyond. Clin. Microbiol. Infect. 22, 12–21 (2016).

    Google Scholar 

  5. Snetkov, P. et al. In-vitro antibacterial activity of curcumin-loaded nanofibers based on hyaluronic acid against multidrug-resistant ESKAPE pathogens. Pharmaceutics 14, 1186 (2022).

    Google Scholar 

  6. Lee, N. Y., Ko, W. C. & Hsueh, P. R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10, 1153 (2019).

    Google Scholar 

  7. Canaparo, R. et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24, 1991 (2019).

    Google Scholar 

  8. Osmokrovic, A. et al. Current state and advances in antimicrobial strategies for burn wound dressings: from metal-based antimicrobials and natural bioactive agents to future perspectives. Int. J. Mol. Sci. 26, 4381 (2025).

    Google Scholar 

  9. Vo, V. et al. Dermal substitutes for clinical management of severe burn injuries: current and future perspectives. Adv. Ther. 8, 2400455 (2025).

    Google Scholar 

  10. Khosravimelal, S., Chizari, M., Farhadihosseinabadi, B., Moosazadeh Moghaddam, M. & Gholipourmalekabadi, M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application.

  11. Garcia, C. E. G., Martínez, F. A. S., Bossard, F. & Rinaudo, M. Production of chitosan/hyaluronan complex nanofibers. Characterization and physical properties as a function of the composition. Polymers 12 (2020).

  12. Rajeshkumar, S. et al. Synthesis of greener silver nanoparticle-based Chitosan nanocomposites and their potential antimicrobial activity against oral pathogens. 10, 658–665 (2021).

  13. Lin, Z. et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 140, 330–342 (2019).

    Google Scholar 

  14. Karthik, V., Arivarasu, L. & Rajeshkumar, S. Hyaluronic acid mediated zinc nanoparticles against oral pathogens and its cytotoxic potential. J. Pharm. Res. Int. 32, 113–117 (2020).

    Google Scholar 

  15. Liang, Z. & Chen, D. Targeting therapy effects of composite hyaluronic acid/chitosan nanosystems containing inclusion complexes. Drug Deliv. 29, 2734–2741 (2022).

    Google Scholar 

  16. Chen, C. H., Cheng, Y. H., Chen, S. H., Chuang, A. D. C. & Chen, J. P. Functional hyaluronic acid-polylactic acid/silver nanoparticles core-sheath nanofiber membranes for prevention of post-operative tendon adhesion. Int. J. Mol. Sci. 22, 8781 (2021).

    Google Scholar 

  17. Lee, H., Park, H., Noh, G. J. & Lee, E. S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym. 202, 323–333 (2018).

    Google Scholar 

  18. Talebi, M., Ghale, R. A., Asl, R. M. & Tabandeh, F. Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: a review. Carbohydrate Polym. Technol. Applications, 100706 (2025).

  19. Saadati, F. et al. Advances and principles of hyaluronic acid production, extraction, purification, and its applications: A review. International J. Biol. Macromolecules, 143839 (2025).

  20. Nikuiyan, Z. et al. Reconstruction of a genome-scale metabolic model for Streptococcus zooepidemicus: comparison with Corynebacterium glutamicum to study hyaluronic acid production. PLoS One. 20, e0335509 (2025).

    Google Scholar 

  21. Chang, R. et al. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int. J. Biol. Macromol. 226, 870–884 (2023).

    Google Scholar 

  22. Zamboni, F., Wong, C. K. & Collins, M. N. Hyaluronic acid association with bacterial, fungal and viral infections: can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioactive Mater. 19, 458–473 (2023).

    Google Scholar 

  23. Westbrook, A. W., Ren, X., Moo-Young, M. & Chou, C. P. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Biotechnol. Bioeng. 115, 1239–1252 (2018).

    Google Scholar 

  24. Ijaz, M. et al. Dissecting Streptococcus pyogenes interaction with human. Arch. Microbiol. 202, 2023–2032 (2020).

    Google Scholar 

  25. Liu, Y. et al. Springer,. in Advances in Applied Biotechnology 439–452 (2015).

  26. Garlapati, V. K. Comprehensive review on biotechnological production of hyaluronic acid status, Innovation, Market and Applications. (2022).

  27. Hoffmann, J. & Altenbuchner, J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight. J. Appl. Microbiol. 117, 663–678 (2014).

    Google Scholar 

  28. Cheng, F., Luozhong, S., Guo, Z., Yu, H. & Stephanopoulos, G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol. J. 12, 1700191 (2017).

    Google Scholar 

  29. Tabasi, A. et al. Improved production of food-grade hyaluronic acid in Recombinant Corynebacterium glutamicum by medium optimization and feeding strategy. Applied Food Biotechnology 12, 1–14 .

  30. Michalska-Sionkowska, M., Kaczmarek, B., Walczak, M. & Sionkowska, A. Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater. Sci. Engineering: C. 86, 103–108 (2018).

    Google Scholar 

  31. Oryan, A. & Sahvieh, S. Effectiveness of Chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003–1011 (2017).

    Google Scholar 

  32. Michalska-Sionkowska, M., Walczak, M. & Sionkowska, A. Antimicrobial activity of collagen material with thymol addition for potential application as wound dressing. Polym. Test. 63, 360–366 (2017).

    Google Scholar 

  33. Hosny, S. et al. A comprehensive review of silver nanoparticles (AgNPs): synthesis strategies, toxicity concerns, biomedical applications, ai-driven advancements, challenges, and future perspectives. Arabian J. Sci. Engineering, 1–48 (2025).

  34. Duman, H. et al. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 14, 1527 (2024).

    Google Scholar 

  35. Del Olmo, J. A. et al. Hyaluronic acid-based hydrogel coatings on Ti6Al4V implantable biomaterial with multifunctional antibacterial activity. Carbohydr. Polym. 301, 120366 (2023).

    Google Scholar 

  36. Villamizar-Sarmiento, M. G. et al. Ionic nanocomplexes of hyaluronic acid and polyarginine to form solid materials: A green methodology to obtain sponges with biomedical potential. Nanomaterials 9, 944 (2019).

    Google Scholar 

  37. Abdel-Mohsen, A. et al. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 139, 730–739 (2019).

    Google Scholar 

  38. Karami, M. et al. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol. Lett. 43, 133–142 (2021).

    Google Scholar 

  39. Miguel, S. P. et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm. 139, 1–22 (2019).

    Google Scholar 

  40. Bitter, T. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962).

    Google Scholar 

  41. Cesaretti, M., Luppi, E., Maccari, F. & Volpi, N. A 96-well assay for uronic acid carbazole reaction. Carbohydr. Polym. 54, 59–61 (2003).

    Google Scholar 

  42. Song, J. M., Im, J. H., Kang, J. H. & Kang D.-J. A simple method for hyaluronic acid quantification in culture broth. Carbohydr. Polym. 78, 633–634 (2009).

    Google Scholar 

  43. Bouin, A. S. & Wierer, M. Quality standards of the European pharmacopoeia. J. Ethnopharmacol. 158, 454–457 (2014).

    Google Scholar 

  44. Li, C. et al. Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: a preclinical study. International J. Nanomedicine, 4131–4145 (2013).

  45. Kanimozhi, K., Basha, S. K., Kumari, V. S., Kaviyarasu, K. & Maaza, M. In vitro cytocompatibility of chitosan/PVA/methylcellulose–Nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl. Surf. Sci. 449, 574–583 (2018).

    Google Scholar 

  46. Um, I. C., Fang, D., Hsiao, B. S., Okamoto, A. & Chu, B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5, 1428–1436 (2004).

    Google Scholar 

  47. Ward, P. D., Thibeault, S. L. & Gray, S. D. Hyaluronic acid: its role in voice. J. Voice. 16, 303–309 (2002).

    Google Scholar 

  48. Boldock, E. et al. Human skin commensals augment Staphylococcus aureus pathogenesis. Nat. Microbiol. 3, 881–890 (2018).

    Google Scholar 

  49. Giovane, R., Pernia, L., Faught, W., Cumagen, P. & Comer, J. M. Polymicrobial wound infection caused by Lelliottia amnigena, Staphylococcus aureus, and Corynebacterium following a lawnmower accident. Cureus 17 (2025).

  50. Villanueva, D. M. et al. Escherichia coli ST1193 O75 H5: A rare cause of native valve endocarditis with multifocal emboli to brain and spleen. IDCases 37, e02052 (2024).

  51. Azam, A. et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International J. Nanomedicine, 6003–6009 (2012).

  52. Fazal, A., Ara, S., Ishaq, M. T. & Sughra, K. Green fabrication of copper oxide nanoparticles: a comparative antibacterial study against gram-positive and gram-negative bacteria. Arab. J. Sci. Eng. 47, 523–533 (2022).

    Google Scholar 

  53. Alavi, M. & Varma, R. S. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 28, 8295–8311 (2021).

    Google Scholar 

  54. Bernardo, M. P., Pasquini, D. & Mattoso, L. H. Enhanced antibacterial activity of wound dressings based on alginate/hydroxyapatite modified with copper and Naproxen. J. Mater. Res. 39, 762–773 (2024).

    Google Scholar 

  55. Slavin, Y. N., Asnis, J., Hńfeli, U. O. & Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1–20 (2017).

    Google Scholar 

  56. Pelgrift, R. Y. & Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013).

    Google Scholar 

Download references