Engineering artificial biosynthetic pathway enables simultaneous production and in-situ bio-dyeing of indigoids for textiles

engineering-artificial-biosynthetic-pathway-enables-simultaneous-production-and-in-situ-bio-dyeing-of-indigoids-for-textiles
Engineering artificial biosynthetic pathway enables simultaneous production and in-situ bio-dyeing of indigoids for textiles

References

  1. Qin, Z., Wang, X., Gao, S., Li, D. & Zhou, J. Production of natural pigments using microorganisms. J. Agric. Food Chem. 71, 9243–9254 (2023).

    Google Scholar 

  2. Ziderman, I. I. Purple dyes made from shellfish in antiquity. Rev. Prog. Color. Relat. Top. 16, 46–52 (1986).

    Google Scholar 

  3. Splitstoser, J. C., Dillehay, T. D., Wouters, J. & Claro, A. Early pre-Hispanic use of indigo blue in Peru. Sci. Adv. 2, e1501623 (2016).

    Google Scholar 

  4. Clark, R. J. H., Cooksey, C. J., Daniels, M. A. M. & Withnall, R. Indigo, woad, and Tyrian purple: important vat dyes from antiquity to the present. Endeavour 17, 191–199 (1993).

    Google Scholar 

  5. McGovern, P. E. & Michel, R. H. Royal purple dye: the chemical reconstruction of the ancient mediterranean industry. Acc. Chem. Res. 23, 152–158 (2002).

    Google Scholar 

  6. Grand View Research. Denim jeans market size and share, industry report, 2030. https://www.grandviewresearch.com/industry-analysis/denim-jeans-market (2024).

  7. Jorge, A. M. S., Athira, K. K., Alves, M. B., Gardas, R. L. & Pereira, J. F. B. Textile dyes effluents: a current scenario and the use of aqueous biphasic systems for the recovery of dyes. J. Water Process Eng. 55, 104125 (2023).

    Google Scholar 

  8. Hsu, T. M. et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018).

    Google Scholar 

  9. Blackburn, R. S., Bechtold, T. & John, P. The development of indigo reduction methods and pre-reduced indigo products. Color. Technol. 125, 193–207 (2009).

    Google Scholar 

  10. Lee, J. et al. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat. Chem. Biol. 17, 104–112 (2021).

    Google Scholar 

  11. Li, F. et al. One-pot selective biosynthesis of Tyrian purple in Escherichia coli. Metab. Eng. 81, 100–109 (2024).

    Google Scholar 

  12. Alves, M. B. N., Jorge, A. M. S. & Pereira, J. F. B. The biotechnology revolution in textile dyeing. Trends Biotechnol 42, 1211–1214 (2024).

    Google Scholar 

  13. Fan, C. et al. Overview of indigo biosynthesis by flavin-containing monooxygenases: history, industrialization challenges, and strategies. Biotechnol. Adv. 73, 108374 (2024).

    Google Scholar 

  14. Elangovan, S. et al. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641 (2016).

    Google Scholar 

  15. Zhang, X., Zhang, B., Lin, J. & Wei, D. Oxidation of ethylene glycol to glycolaldehyde using a highly selective alcohol dehydrogenase from Gluconobacter oxydans. J. Mol. Catal. B 112, 69–75 (2015).

    Google Scholar 

  16. Llabres-Campaner, P. J., Ballesteros-Garrido, R., Ballesteros, R. & Abarca, B. Straight access to indoles from anilines and ethylene glycol by heterogeneous acceptorless dehydrogenative condensation. J. Org. Chem. 83, 521–526 (2017).

    Google Scholar 

  17. Qi, S. et al. Constructing a multienzyme cascade redox-neutral system for the synthesis of halogenated indoles. Chem. Commun. 58, 6016–6019 (2022).

    Google Scholar 

  18. Mallette, E. & Kimber, M. S. Structure and kinetics of the S-(+)-1-Amino-2-propanol dehydrogenase from the RMM microcompartment of Mycobacterium smegmatis. Biochemistry 57, 3780–3789 (2018).

    Google Scholar 

  19. Höffken, H. W. et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45, 82–93 (2006).

    Google Scholar 

  20. Friedrich, C. G. et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J. Bacteriol. 182, 4677–4687 (2000).

    Google Scholar 

  21. Man, H. et al. Structures of alcohol dehydrogenases from Ralstonia and Sphingobium spp. reveal the molecular basis for their recognition of ‘bulky–bulky’ ketones. Top. Catal. 57, 356–365 (2013).

    Google Scholar 

  22. Ying, X. et al. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones. Appl. Environ. Microbiol. 80, 2399–2409 (2014).

    Google Scholar 

  23. Karabec, M. et al. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem. Commun. 46, 6314–6316 (2010).

    Google Scholar 

  24. Ravel, J. et al. Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 7, e35750 (2012).

    Google Scholar 

  25. Plapp, B. V. Solvent isotope and mutagenesis studies on the proton relay system in yeast alcohol dehydrogenase 1. Chem.-Biol. Interact. 388, 110853 (2024).

    Google Scholar 

  26. Engel, S. R. et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. Genes Genomes Genet 4, 389–398 (2014).

    Google Scholar 

  27. Dinh, T., Rahn, K. T. & Phillips, R. S. Crystallographic snapshots of ternary complexes of thermophilic secondary alcohol dehydrogenase from Thermoanaerobacter pseudoethanolicus reveal the dynamics of ligand exchange and the proton relay network. Proteins 90, 1570–1583 (2022).

    Google Scholar 

  28. Holt, P. J., Williams, R. E., Jordan, K. N., Lowe, C. R. & Bruce, N. C. Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol. Lett. 190, 57–62 (2000).

    Google Scholar 

  29. Liu, X. et al. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology 155, 2078–2085 (2009).

    Google Scholar 

  30. Huang, L., Sayoga, G. V., Hollmann, F. & Kara, S. Horse liver alcohol dehydrogenase-catalyzed oxidative lactamization of amino alcohols. ACS Catal 8, 8680–8684 (2018).

    Google Scholar 

  31. Tan, Z. et al. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. Sci. Adv. 8, 1912–1921 (2022).

    Google Scholar 

  32. Choi, H. S. et al. A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 306, 930–936 (2003).

    Google Scholar 

  33. Ameria, S. P. et al. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol. Lett. 37, 1637–1644 (2015).

    Google Scholar 

  34. Loncar, N. et al. Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Appl. Microbiol. Biotechnol. 103, 1755–1764 (2019).

    Google Scholar 

  35. Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).

    Google Scholar 

  36. Schmidt, S. et al. An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew. Chem. Int. Ed. 54, 2784–2787 (2015).

    Google Scholar 

  37. Bornadel, A., Hatti-Kaul, R., Hollmann, F. & Kara, S. A bi-enzymatic convergent cascade for ε-caprolactone synthesis employing 1,6-hexanediol as a ‘double-smart cosubstrate’. ChemCatChem 7, 2442–2445 (2015).

    Google Scholar 

  38. Ma, L. et al. Enzymatic synthesis of indigo derivatives by tuning P450 BM3 peroxygenases. Synth. Syst. Biotechnol. 8, 452–461 (2023).

    Google Scholar 

  39. Zhang, J. et al. Cascade biocatalysis for regio- and stereoselective aminohydroxylation of styrenyl olefins to enantiopure arylglycinols. ACS Sustainable Chem. Eng. 8, 18277–18285 (2020).

    Google Scholar 

  40. Du, J., Yang, D., Luo, Z. W. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267, 19–28 (2018).

    Google Scholar 

  41. Schnepel, C., Dodero, V. I. & Sewald, N. Novel arylindigoids by late-stage derivatization of biocatalytically synthesized dibromoindigo. Chem. Eur. J. 27, 5404–5411 (2021).

    Google Scholar 

  42. Angelis-Dimakis, A., Alexandratou, A. & Balzarini, A. Value chain upgrading in a textile dyeing industry. J. Clean. Prod. 138, 237–247 (2016).

    Google Scholar 

  43. Ramaiah, G. B. & Ari, A. P. Evaluation of color strength (K/S) values of cotton fabrics dyed with reactive dye and treated with silver nanoparticles. AIP Conf. Proc. 2162, 020111 (2019).

    Google Scholar 

  44. Ramig, K. et al. The nature of thermochromic effects in dyeings with indigo, 6-bromoindigo, and 6,6′-dibromoindigo, components of Tyrian purple. Dyes Pigments 117, 37–48 (2015).

    Google Scholar 

  45. Tassano, E. & Hall, M. Enzymatic self-sufficient hydride transfer processes. Chem. Soc. Rev. 48, 5596–5615 (2019).

    Google Scholar 

  46. Paul, C. E., Eggerichs, D., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavoprotein monooxygenases: versatile biocatalysts. Biotechnol. Adv. 51, 107712 (2021).

    Google Scholar 

  47. Huijbers, M. M. E., Montersino, S., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 544, 2–17 (2014).

    Google Scholar 

  48. Namgung, S. et al. Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes Pigments 162, 80–88 (2019).

    Google Scholar 

  49. Sadauskas, M. et al. Enzymatic synthesis of novel water-soluble indigoid compounds. Dyes Pigments 173, 107882 (2020).

    Google Scholar 

  50. Rioz-Martínez, A. et al. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 9, 1337–1341 (2011).

    Google Scholar 

  51. Kim, J. et al. Elucidating cysteine-assisted synthesis of indirubin by a flavin-containing monooxygenase. ACS Catal 9, 9539–9544 (2019).

    Google Scholar 

  52. Choi, K. Y. A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications. Dyes Pigments 181, 108570 (2020).

    Google Scholar 

  53. Pham, N. N. et al. Auto-inducible synthetic pathway in E. coli enhanced sustainable indigo production from glucose. Metab. Eng. 85, 14–25 (2024).

    Google Scholar 

  54. Erdem, E. & Woodley, J. M. Using enzymes for catalysis under industrial conditions. ACS Catal 14, 18436–18441 (2024).

    Google Scholar 

  55. Wang, J. et al. Gas-liquid interface effects on a one-pot two-enzyme biocatalytic oxidation systems. ACS Catal 15, 9277–9289 (2025).

    Google Scholar 

  56. Fan, F., Wu, Y. & Wu, X. Energy-efficient dyeing of nylon 6 using indigo powder dyestuff after atmospheric plasma treatment at ambient pressure. Color Technol 135, 322–332 (2019).

    Google Scholar 

  57. Walker, K. T. et al. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression. Nat. Biotechnol. 43, 345–354 (2025).

    Google Scholar 

Download references