References
-
Qin, Z., Wang, X., Gao, S., Li, D. & Zhou, J. Production of natural pigments using microorganisms. J. Agric. Food Chem. 71, 9243–9254 (2023).
-
Ziderman, I. I. Purple dyes made from shellfish in antiquity. Rev. Prog. Color. Relat. Top. 16, 46–52 (1986).
-
Splitstoser, J. C., Dillehay, T. D., Wouters, J. & Claro, A. Early pre-Hispanic use of indigo blue in Peru. Sci. Adv. 2, e1501623 (2016).
-
Clark, R. J. H., Cooksey, C. J., Daniels, M. A. M. & Withnall, R. Indigo, woad, and Tyrian purple: important vat dyes from antiquity to the present. Endeavour 17, 191–199 (1993).
-
McGovern, P. E. & Michel, R. H. Royal purple dye: the chemical reconstruction of the ancient mediterranean industry. Acc. Chem. Res. 23, 152–158 (2002).
-
Grand View Research. Denim jeans market size and share, industry report, 2030. https://www.grandviewresearch.com/industry-analysis/denim-jeans-market (2024).
-
Jorge, A. M. S., Athira, K. K., Alves, M. B., Gardas, R. L. & Pereira, J. F. B. Textile dyes effluents: a current scenario and the use of aqueous biphasic systems for the recovery of dyes. J. Water Process Eng. 55, 104125 (2023).
-
Hsu, T. M. et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018).
-
Blackburn, R. S., Bechtold, T. & John, P. The development of indigo reduction methods and pre-reduced indigo products. Color. Technol. 125, 193–207 (2009).
-
Lee, J. et al. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat. Chem. Biol. 17, 104–112 (2021).
-
Li, F. et al. One-pot selective biosynthesis of Tyrian purple in Escherichia coli. Metab. Eng. 81, 100–109 (2024).
-
Alves, M. B. N., Jorge, A. M. S. & Pereira, J. F. B. The biotechnology revolution in textile dyeing. Trends Biotechnol 42, 1211–1214 (2024).
-
Fan, C. et al. Overview of indigo biosynthesis by flavin-containing monooxygenases: history, industrialization challenges, and strategies. Biotechnol. Adv. 73, 108374 (2024).
-
Elangovan, S. et al. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641 (2016).
-
Zhang, X., Zhang, B., Lin, J. & Wei, D. Oxidation of ethylene glycol to glycolaldehyde using a highly selective alcohol dehydrogenase from Gluconobacter oxydans. J. Mol. Catal. B 112, 69–75 (2015).
-
Llabres-Campaner, P. J., Ballesteros-Garrido, R., Ballesteros, R. & Abarca, B. Straight access to indoles from anilines and ethylene glycol by heterogeneous acceptorless dehydrogenative condensation. J. Org. Chem. 83, 521–526 (2017).
-
Qi, S. et al. Constructing a multienzyme cascade redox-neutral system for the synthesis of halogenated indoles. Chem. Commun. 58, 6016–6019 (2022).
-
Mallette, E. & Kimber, M. S. Structure and kinetics of the S-(+)-1-Amino-2-propanol dehydrogenase from the RMM microcompartment of Mycobacterium smegmatis. Biochemistry 57, 3780–3789 (2018).
-
Höffken, H. W. et al. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45, 82–93 (2006).
-
Friedrich, C. G. et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J. Bacteriol. 182, 4677–4687 (2000).
-
Man, H. et al. Structures of alcohol dehydrogenases from Ralstonia and Sphingobium spp. reveal the molecular basis for their recognition of ‘bulky–bulky’ ketones. Top. Catal. 57, 356–365 (2013).
-
Ying, X. et al. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones. Appl. Environ. Microbiol. 80, 2399–2409 (2014).
-
Karabec, M. et al. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem. Commun. 46, 6314–6316 (2010).
-
Ravel, J. et al. Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 7, e35750 (2012).
-
Plapp, B. V. Solvent isotope and mutagenesis studies on the proton relay system in yeast alcohol dehydrogenase 1. Chem.-Biol. Interact. 388, 110853 (2024).
-
Engel, S. R. et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. Genes Genomes Genet 4, 389–398 (2014).
-
Dinh, T., Rahn, K. T. & Phillips, R. S. Crystallographic snapshots of ternary complexes of thermophilic secondary alcohol dehydrogenase from Thermoanaerobacter pseudoethanolicus reveal the dynamics of ligand exchange and the proton relay network. Proteins 90, 1570–1583 (2022).
-
Holt, P. J., Williams, R. E., Jordan, K. N., Lowe, C. R. & Bruce, N. C. Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol. Lett. 190, 57–62 (2000).
-
Liu, X. et al. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology 155, 2078–2085 (2009).
-
Huang, L., Sayoga, G. V., Hollmann, F. & Kara, S. Horse liver alcohol dehydrogenase-catalyzed oxidative lactamization of amino alcohols. ACS Catal 8, 8680–8684 (2018).
-
Tan, Z. et al. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. Sci. Adv. 8, 1912–1921 (2022).
-
Choi, H. S. et al. A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 306, 930–936 (2003).
-
Ameria, S. P. et al. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol. Lett. 37, 1637–1644 (2015).
-
Loncar, N. et al. Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Appl. Microbiol. Biotechnol. 103, 1755–1764 (2019).
-
Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).
-
Schmidt, S. et al. An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew. Chem. Int. Ed. 54, 2784–2787 (2015).
-
Bornadel, A., Hatti-Kaul, R., Hollmann, F. & Kara, S. A bi-enzymatic convergent cascade for ε-caprolactone synthesis employing 1,6-hexanediol as a ‘double-smart cosubstrate’. ChemCatChem 7, 2442–2445 (2015).
-
Ma, L. et al. Enzymatic synthesis of indigo derivatives by tuning P450 BM3 peroxygenases. Synth. Syst. Biotechnol. 8, 452–461 (2023).
-
Zhang, J. et al. Cascade biocatalysis for regio- and stereoselective aminohydroxylation of styrenyl olefins to enantiopure arylglycinols. ACS Sustainable Chem. Eng. 8, 18277–18285 (2020).
-
Du, J., Yang, D., Luo, Z. W. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267, 19–28 (2018).
-
Schnepel, C., Dodero, V. I. & Sewald, N. Novel arylindigoids by late-stage derivatization of biocatalytically synthesized dibromoindigo. Chem. Eur. J. 27, 5404–5411 (2021).
-
Angelis-Dimakis, A., Alexandratou, A. & Balzarini, A. Value chain upgrading in a textile dyeing industry. J. Clean. Prod. 138, 237–247 (2016).
-
Ramaiah, G. B. & Ari, A. P. Evaluation of color strength (K/S) values of cotton fabrics dyed with reactive dye and treated with silver nanoparticles. AIP Conf. Proc. 2162, 020111 (2019).
-
Ramig, K. et al. The nature of thermochromic effects in dyeings with indigo, 6-bromoindigo, and 6,6′-dibromoindigo, components of Tyrian purple. Dyes Pigments 117, 37–48 (2015).
-
Tassano, E. & Hall, M. Enzymatic self-sufficient hydride transfer processes. Chem. Soc. Rev. 48, 5596–5615 (2019).
-
Paul, C. E., Eggerichs, D., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavoprotein monooxygenases: versatile biocatalysts. Biotechnol. Adv. 51, 107712 (2021).
-
Huijbers, M. M. E., Montersino, S., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 544, 2–17 (2014).
-
Namgung, S. et al. Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes Pigments 162, 80–88 (2019).
-
Sadauskas, M. et al. Enzymatic synthesis of novel water-soluble indigoid compounds. Dyes Pigments 173, 107882 (2020).
-
Rioz-Martínez, A. et al. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 9, 1337–1341 (2011).
-
Kim, J. et al. Elucidating cysteine-assisted synthesis of indirubin by a flavin-containing monooxygenase. ACS Catal 9, 9539–9544 (2019).
-
Choi, K. Y. A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications. Dyes Pigments 181, 108570 (2020).
-
Pham, N. N. et al. Auto-inducible synthetic pathway in E. coli enhanced sustainable indigo production from glucose. Metab. Eng. 85, 14–25 (2024).
-
Erdem, E. & Woodley, J. M. Using enzymes for catalysis under industrial conditions. ACS Catal 14, 18436–18441 (2024).
-
Wang, J. et al. Gas-liquid interface effects on a one-pot two-enzyme biocatalytic oxidation systems. ACS Catal 15, 9277–9289 (2025).
-
Fan, F., Wu, Y. & Wu, X. Energy-efficient dyeing of nylon 6 using indigo powder dyestuff after atmospheric plasma treatment at ambient pressure. Color Technol 135, 322–332 (2019).
-
Walker, K. T. et al. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression. Nat. Biotechnol. 43, 345–354 (2025).
