References
-
Ueda, N. et al. Immunotherapy perspectives in the new era of B-cell editing. Blood Adv. 5, 1770–1779 (2021).
-
Edelstein, J., Fritz, M. & Lai, S. K. Challenges and opportunities in gene editing of B cells. Biochem. Pharmacol. 206, 115285 (2022).
-
Jeske, A. M., Boucher, P., Curiel, D. & Voss, J. Vector strategies to actualize B cell-based gene therapies. J. Immunol. 207, 755–764 (2021).
-
Rogers, G. L. et al. Optimization of AAV6 transduction enhances site-specific genome editing of primary human lymphocytes. Mol. Ther. Methods Clin. Dev. 23, 198–209 (2021).
-
Page, A., Hubert, J., Fusil, F. & Cosset, F.-L. Exploiting B cell transfer for cancer therapy: engineered B cells to eradicate tumors. Int. J. Mol. Sci. 22, 9991 (2021).
-
Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).
-
Hibi, T. & Dosch, H. M. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur. J. Immunol. 16, 139–145 (1986).
-
Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).
-
Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).
-
Gorzelany, J. A. & de Souza, M. P. Protein replacement therapies for rare diseases: a breeze for regulatory approval? Sci. Transl. Med. 5, 178fs10 (2013).
-
Samelson-Jones, B. J. & George, L. A. Adeno-associated virus gene therapy for hemophilia. Annu. Rev. Med. 74, 231–247 (2023).
-
Srivastava, A. et al. Lentiviral gene therapy with CD34+ hematopoietic cells for hemophilia A. N. Engl. J. Med. 392, 450–457 (2025).
-
Tiede, A. Half-life extended factor VIII for the treatment of hemophilia A. J. Thromb. Haemost. 13, S176–S179 (2015).
-
Chen, H. H. et al. Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J. Hum. Genet. 64, 1153–1171 (2019).
-
Chu, W. et al. Status and frontiers of Fabre disease. Orphanet J. Rare Dis. 20, 123 (2025).
-
Salabarria, S. M. et al. Advancements in AAV-mediated gene therapy for Pompe disease. J. Neuromuscul. Dis. 7, 15–31 (2020).
-
Placci, M., Giannotti, M. I. & Muro, S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv. Drug Deliv. Rev. 197, 114683 (2023).
-
Ozelo, M. C. et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).
-
Pipe, S. W. et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N. Engl. J. Med. 388, 706–718 (2023).
-
Mingozzi, F. & High, K. A. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4, 511–534 (2017).
-
Cunningham, S. C., Dane, A. P., Spinoulas, A. & Alexander, I. E. Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol. Ther. 16, 1081–1088 (2008).
-
Hill, T. F. et al. Human plasma cells engineered to secrete bispecifics drive effective in vivo leukemia killing. Mol. Ther. https://doi.org/10.1016/j.ymthe.2024.06.004 (2024).
-
Luo, B. et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 11, 973 (2020).
-
Moffett, H. F. et al. B cells engineered to express pathogen-specific antibodies protect against infection. Sci. Immunol. 4, eaax0644 (2019).
-
Silacci, P., Mottet, A., Steimle, V., Reith, W. & Mach, B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J. Exp. Med. 180, 1329–1336 (1994).
-
Duan, M. et al. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep. 42, 112682 (2023).
-
Young, D. J. et al. In vivo tracking of ex-vivo-generated 89Zr-oxine-labeled plasma cells by PET in a non-human primate model. Mol. Ther. https://doi.org/10.1016/j.ymthe.2024.12.042 (2024).
-
Hung, K. L. et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol. Ther. 26, 456–467 (2018).
-
David, M. et al. Production of therapeutic levels of human FIX-R338L by engineered B cells using GMP-compatible medium. Mol. Ther. Methods Clin. Dev. 31, 101111 (2023).
-
Liu, H. et al. A precision gene engineered B cell medicine producing sustained levels of active factor IX for hemophilia B therapy. Preprint at bioRxiv https://doi.org/10.1101/2025.04.06.647090 (2025).
-
Philippidis, A. Immusoft reports promising early data for lead candidate in MPS I. GEN—Genetic Engineering and Biotechnology News. www.genengnews.com/topics/drug-discovery/immusoft-reports-promising-early-data-for-lead-candidate-in-mps-i/ (2024).
-
Pipe, S. W. et al. Become-9: a phase 1/2 dose escalation and expansion study of be-101 for the treatment of adults with moderately severe or severe hemophilia B. Blood 144, 2593.1 (2024).
-
Rastogi, I. et al. Role of B cells as antigen presenting cells. Front. Immunol. 13, 954936 (2022).
-
Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).
-
Song, W. & Craft, J. T follicular helper cell heterogeneity: time, space, and function. Immunol. Rev. 288, 85–96 (2019).
-
Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).
-
Hartweger, H. et al. HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. J. Exp. Med. 216, 1301–1310 (2019).
-
Huang, D. et al. B cells expressing authentic naive human VRC01-class BCRs can be recruited to germinal centers and affinity mature in multiple independent mouse models. Proc. Natl Acad. Sci. USA 117, 22920–22931 (2020).
-
Huang, D. et al. Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells. Nat. Commun. 11, 5850 (2020).
-
Nahmad, A. D. et al. Engineered B cells expressing an anti-HIV antibody enable memory retention, isotype switching and clonal expansion. Nat. Commun. 11, 5851 (2020).
-
Greiner, V. et al. CRISPR-mediated editing of the B cell receptor in primary human B cells. iScience 12, 369–378 (2019).
-
Voss, J. E. et al. Reprogramming the antigen specificity of B cells using genome-editing technologies. eLife 8, e42995 (2019).
-
Rogers, G. L. et al. Reprogramming human B cells with custom heavy-chain antibodies. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01240-4 (2024).
-
Yin, Y. et al. In vivo affinity maturation of mouse B cells reprogrammed to express human antibodies. Nat. Biomed. Eng. 8, 361–379 (2024).
-
Wennhold, K. et al. Using antigen-specific B cells to combine antibody and T cell-based cancer immunotherapy. Cancer Immunol. Res. 5, 730–743 (2017).
-
Lee-Chang, C. et al. Activation of 4-1BBL+ B cells with CD40 agonism and IFNγ elicits potent immunity against glioblastoma. J. Exp. Med. 218, e20200913 (2021).
-
Wang, S. et al. B cell-based therapy produces antibodies that inhibit glioblastoma growth. J. Clin. Invest. 134, e177384 (2024).
-
Winkler, J. et al. Adoptive transfer of donor B lymphocytes: a phase 1/2a study for patients after allogeneic stem cell transplantation. Blood Adv. 8, 2373–2383 (2024).
-
Winkler, J. et al. GMP-grade generation of B-lymphocytes for adoptive immunotherapy in patients after allogeneic stem cell transplantation. Blood 120, 4352 (2012).
-
Winkler, J. et al. Adoptive transfer of purified donor-B-lymphocytes after allogeneic stem cell transplantation: results from a phase I/IIa clinical trial. Blood 128, 502 (2016).
-
Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).
-
Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).
-
Parekh, V. V. et al. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-β 1. J. Immunol. 170, 5897–5911 (2003).
-
Knippenberg, S. et al. Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J. Neuroimmunol. 239, 80–86 (2011).
-
Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).
-
Flores-Borja, F. et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 5, 173ra23 (2013).
-
Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).
-
Shankar, S. et al. Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. Nat. Commun. 13, 3121 (2022).
-
Lee, K. M. et al. Suppression of allograft rejection by regulatory B cells induced via TLR signaling. JCI Insight 7, e152213 (2022).
-
Bao, Y. et al. Ex vivo-generated human CD1c+ regulatory B cells by a chemically defined system suppress immune responses and alleviate graft-versus-host disease. Mol. Ther. 32, 4372–4382 (2024).
-
Zambidis, E. T., Kurup, A. & Scott, D. W. Genetically transferred central and peripheral immune tolerance via retroviral-mediated expression of immunogenic epitopes in hematopoietic progenitors or peripheral B lymphocytes. Mol. Med. 3, 212–224 (1997).
-
El-Amine, M. et al. Mechanisms of tolerance induction by a gene-transferred peptide-IgG fusion protein expressed in B lineage cells. J. Immunol. 165, 5631–5636 (2000).
-
Melo, M. E. F. et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J. Immunol. 168, 4788–4795 (2002).
-
Song, L. et al. Retroviral delivery of GAD-IgG fusion construct induces tolerance and modulates diabetes: a role for CD4+ regulatory T cells and TGF-β? Gene Ther. 11, 1487–1496 (2004).
-
Lei, T. C. & Scott, D. W. Induction of tolerance to factor VIII inhibitors by gene therapy with immunodominant A2 and C2 domains presented by B cells as Ig fusion proteins. Blood 105, 4865–4870 (2005).
-
Wang, X. et al. Immune tolerance induction to factor IX through B cell gene transfer: TLR9 signaling delineates between tolerogenic and immunogenic B cells. Mol. Ther. 22, 1139–1150 (2014).
-
Ahangarani, R. R. et al. In vivo induction of type 1-like regulatory T cells using genetically modified B cells confers long-term IL-10-dependent antigen-specific unresponsiveness. J. Immunol. 183, 8232–8243 (2009).
-
Calderón-Gómez, E. et al. Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis. Eur. J. Immunol. 41, 1696–1708 (2011).
-
Chen, D. et al. Novel engineered B lymphocytes targeting islet-specific T cells inhibit the development of type 1 diabetes in non-obese diabetic Scid mice. Front. Immunol. 14, 1227133 (2023).
-
Pitner, R. A. et al. Blunting specific T-dependent antibody responses with engineered ‘decoy’ B cells. Mol. Ther. 32, 3453–3469 (2024).
-
Luo, X. M. et al. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 113, 1422–1431 (2009).
-
Cheng, R. Y.-H. et al. Ex vivo engineered human plasma cells exhibit robust protein secretion and long-term engraftment in vivo. Nat. Commun. 13, 6110 (2022).
-
He, W. et al. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 56, 2408–2424.e6 (2023).
-
Serafini, M., Naldini, L. & Introna, M. Molecular evidence of inefficient transduction of proliferating human B lymphocytes by VSV-pseudotyped HIV-1-derived lentivectors. Virology 325, 413–424 (2004).
-
Janssens, W. et al. Efficiency of onco-retroviral and lentiviral gene transfer into primary mouse and human B-lymphocytes is pseudotype dependent. Hum. Gene Ther. 14, 263–276 (2003).
-
Frecha, C. et al. Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors. Blood 114, 3173–3180 (2009).
-
Vamva, E. et al. A lentiviral vector B cell gene therapy platform for the delivery of the anti-HIV-1 eCD4-Ig-knob-in-hole-reversed immunoadhesin. Mol. Ther. Methods Clin. Dev. 28, 366–384 (2023).
-
Levy, C. et al. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc−/− mice. J. Thromb. Haemost. 14, 2478–2492 (2016).
-
Bender, R. R. et al. Receptor-targeted Nipah virus glycoproteins improve cell-type selective gene delivery and reveal a preference for membrane-proximal cell attachment. PLoS Pathog. 12, e1005641 (2016).
-
Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).
-
Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).
-
Yu, B. et al. Engineered cell entry links receptor biology with single-cell genomics. Cell 185, 4904–4920.e22 (2022).
-
Takano, K.-A. et al. Envelope protein-specific B cell receptors direct lentiviral vector tropism in vivo. Mol. Ther. 32, 1311–1327 (2024).
-
Ou, T. et al. Reprogramming of the heavy-chain CDR3 regions of a human antibody repertoire. Mol. Ther. 30, 184–197 (2022).
-
Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 8, 12144 (2018).
-
Selvaraj, S. et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat. Biotechnol. 42, 731–744 (2024).
-
Sheridan, C. B cells as drug factories. Nat. Biotechnol. 42, 823–826 (2024).
-
Hackett, P. B. & Essner, J. Integration-site directed vector systems. US patent US7919583B2 (2005).
-
Laoharawee, K. et al. Genome engineering of primary human B cells using CRISPR/Cas9. J. Vis. Exp. https://doi.org/10.3791/61855 (2020).
-
Giguère, S. et al. Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand. Science 383, 205–211 (2024).
-
Christie, S. M., Fijen, C., & Rothenberg, E. V(D)J recombination: recent insights in formation of the recombinase complex and recruitment of DNA repair machinery. Front. Cell Dev. Biol. 10, 886718 (2022).
-
Nahmad, A. D. et al. In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice. Nat. Biotechnol. 40, 1241–1249 (2022).
-
Russell, D. M. et al. Peripheral deletion of self-reactive B cells. Nature 354, 308–311 (1991).
-
Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146.e6 (2018).
-
Dosenovic, P. et al. Anti–HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity. Proc. Natl Acad. Sci. USA 115, 4743–4748 (2018).
-
Tokatlian, T. et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci. Rep. 8, 16527 (2018).
-
Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).
-
Pan, A. et al. In vivo affinity maturation of the CD4 domains of an HIV-1-entry inhibitor. Nat. Biomed. Eng. 8, 1715–1729 (2024).
-
Buerstedde, J.-M., Alinikula, J., Arakawa, H., McDonald, J. J. & Schatz, D. G. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol. 12, e1001831 (2014).
-
O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).
-
Wallweber, H. J. A., Compaan, D. M., Starovasnik, M. A. & Hymowitz, S. G. The crystal structure of a proliferation-inducing ligand. April. J. Mol. Biol. 343, 283–290 (2004).
-
Lapidot, T. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. Ann. N. Y. Acad. Sci. 938, 83–95 (2001).
-
Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).
-
Chatterjee, S., Behnam Azad, B. & Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 124, 31–82 (2014).
-
Vonderheide, R. H., Tedder, T. F., Springer, T. A. & Staunton, D. E. Residues within a conserved amino acid motif of domains 1 and 4 of VCAM-1 are required for binding to VLA-4. J. Cell Biol. 125, 215–222 (1994).
-
Newham, P. et al. Α4 integrin binding interfaces on VCAM-1 and MAdCAM-1. J. Biol. Chem. 272, 19429–19440 (1997).
-
Benet, Z., Jing, Z. & Fooksman, D. R. Plasma cell dynamics in the bone marrow niche. Cell Rep. 34, 108733 (2021).
-
Nguyen, D. C. et al. Author correction: factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. Nat. Commun. 10, 372 (2019).
-
Roldán, E., García-Pardo, A. & Brieva, J. A. VLA-4-fibronectin interaction is required for the terminal differentiation of human bone marrow cells capable of spontaneous and high rate immunoglobulin secretion. J. Exp. Med. 175, 1739–1747 (1992).
-
Fiorillo, M. T., Cabibbo, A., Iacopetti, P., Fattori, E. & Ciliberto, G. Analysis of human/mouse interleukin-6 hybrid proteins: both amino and carboxy termini of human interleukin-6 are required for in vitro receptor binding. Eur. J. Immunol. 22, 2609–2615 (1992).
-
Neuber, T. et al. Characterization and screening of IgG binding to the neonatal Fc receptor. MAbs 6, 928–942 (2014).
-
Ober, R. J., Radu, C. G., Ghetie, V. & Ward, E. S. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int. Immunol. 13, 1551–1559 (2001).
-
Andersen, J. T., Daba, M. B., Berntzen, G., Michaelsen, T. E. & Sandlie, I. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J. Biol. Chem. 285, 4826–4836 (2010).
-
Li, F. et al. Mouse strains influence clearance and efficacy of antibody and antibody-drug conjugate via Fc-FcγR interaction. Mol. Cancer Ther. 18, 780–787 (2019).
-
Oldham, R. J. et al. FcγRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-mediated tumor cell deletion. J. Immunother. Cancer 8, e000619 (2020).
-
Yu, H. et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129, 959–969 (2017).
-
Li, Y. et al. A human immune system mouse model with robust lymph node development. Nat. Methods 15, 623–630 (2018).
-
Chupp, D. P. et al. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat. Immunol. https://doi.org/10.1038/s41590-024-01880-3 (2024).
-
Sun, K. & Liao, M. Z. Clinical pharmacology considerations on recombinant adeno-associated virus-based gene therapy. J. Clin. Pharmacol. 62, S79–S94 (2022).
-
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).
-
Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582.e20 (2023).
-
Lazar, N. H. et al. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR-Cas9 editing. Nat. Genet. 56, 1482–1493 (2024).
-
Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).
-
Zhang, T.-T. et al. BCR signaling is required for posttransplant lymphoproliferative disease in immunodeficient mice receiving human B cells. Sci. Transl. Med. 16, eadh8846 (2024).
-
Stockfelt, M., Teng, Y. K. O. & Vital, E. M. Opportunities and limitations of B cell depletion approaches in SLE. Nat. Rev. Rheumatol. 21, 111–126 (2025).
-
Gargett, T. & Brown, M. P. The inducible caspase-9 suicide gene system as a “safety switch†to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 5, 235 (2014).
-
Dunkelberger, J. R. & Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).
-
Ma, A. D. & Carrizosa, D. Acquired factor VIII inhibitors: pathophysiology and treatment. Hematol. Am. Soc. Hematol. Educ. Program 2006, 432–437 (2006).
-
Jawa, V. et al. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation-updated consensus and review 2020. Front. Immunol. 11, 1301 (2020).
-
Sabatino, D. E. et al. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol. Ther. 19, 442–449 (2011).
-
Annoni, A. et al. Liver gene therapy by lentiviral vectors reverses anti-factor IX pre-existing immunity in haemophilic mice. EMBO Mol. Med. 5, 1684–1697 (2013).
-
Chand, D. et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J. Hepatol. 74, 560–566 (2021).
-
Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).
-
Gallo-Penn, A. M. et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs. Blood 97, 107–113 (2001).
-
Grauwet, K. et al. Stealth transgenes enable CAR-T cells to evade host immune responses. J. Immunother. Cancer 12, e008417 (2024).
-
Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).
-
Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01784-x (2023).
-
Gupta, P., Alheib, O. & Shin, J.-W. Towards single cell encapsulation for precision biology and medicine. Adv. Drug Deliv. Rev. 201, 115010 (2023).
-
Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).
-
Hartweger, H. et al. Gene editing of primary rhesus macaque B cells. J. Vis. Exp. https://doi.org/10.3791/64858 (2023).
-
Vamva, E. et al. An optimized measles virus glycoprotein-pseudotyped lentiviral vector production system to promote efficient transduction of human primary B cells. STAR Protoc. 3, 101228 (2022).
-
Yu-Hong Cheng, R. et al. Generation, expansion, gene delivery, and single-cell profiling in rhesus macaque plasma B cells. Cell Rep. Methods 4, 100878 (2024).
-
Ishikawa, M. et al. Bone marrow plasma cells require P2RX4 to sense extracellular ATP. Nature 626, 1102–1107 (2024).
-
Van Dam, M. et al. Structure–function analysis of interleukin-6 utilizing human/murine chimeric molecules. Involvement of two separate domains in receptor binding. J. Biol. Chem. 268, 15285–15290 (1993).