Engineering energy-efficient Saccharomyces cerevisiae for methanol and CO2 assimilation

engineering-energy-efficient-saccharomyces-cerevisiae-for-methanol-and-co2-assimilation
Engineering energy-efficient Saccharomyces cerevisiae for methanol and CO2 assimilation

References

  1. Boehm, S. et al. State of Climate Action 2023. World Resour. Inst https://www.wri.org/research/state-climate-action-2023 (2023).

  2. Sollai, S., Porcu, A., Tola, V., Ferrara, F. & Pettinau, A. Renewable methanol production from green hydrogen and captured CO2: a techno-economic assessment. J. CO2 Util. 68, 102345 (2023).

    Google Scholar 

  3. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D. & De Weireld, G. Alternative production of methanol from industrial CO2. Renew. Energ. 146, 1192–1203 (2020).

    Google Scholar 

  4. Kelso, P. A., Chow, L. K. M., Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Toward methanol-based biomanufacturing: emerging strategies for engineering synthetic methylotrophy in Saccharomyces cerevisiae. ACS Synth. Biol. 11, 2548–2563 (2022).

    Google Scholar 

  5. Bertau, M., Offermanns, H., Plass, L., Schmidt, F. & Wernicke, H.-J. Methanol: The Basic Chemical and Energy Feedstock of the Future Vol. 1 (Springer, 2014).

  6. Patel, S. K. S. et al. Hierarchical macroporous particles for efficient whole-cell immobilization: Application in bioconversion of greenhouse gases to methanol. ACS Appl. Mater. Interfaces 11, 18968–18977 (2019).

    Google Scholar 

  7. Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).

    Google Scholar 

  8. Ochsner, A. M., Sonntag, F., Buchhaupt, M., Schrader, J. & Vorholt, J. A. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl. Microbiol. Biotechnol. 99, 517–534 (2015).

    Google Scholar 

  9. Mo, X.-H. et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl. Microbiol. Biotechnol. 104, 4515–4532 (2020).

    Google Scholar 

  10. Schultenkämper, K., Brito, L. F., López, M. G., Brautaset, T. & Wendisch, V. F. Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus. Appl. Microbiol. Biotechnol. 103, 5879–5889 (2019).

    Google Scholar 

  11. Yang, X., Zheng, Z. & Wang, Y. Bacillus methanolicus: an emerging chassis for low-carbon biomanufacturing. Trends Biotechnol. 43, 274–277 (2025).

    Google Scholar 

  12. Gao, J., Gao, N., Zhai, X. & Zhou, Y. J. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 24, 102168 (2021).

    Google Scholar 

  13. Wang, L. et al. Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts. Biotechnol. Biofuels 11, 277 (2018).

    Google Scholar 

  14. Liu, Q. et al. CRISPR–Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb. Cell Fact. 18, 144 (2019).

    Google Scholar 

  15. Guo, F., Qiao, Y., Xin, F., Zhang, W. & Jiang, M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol. 41, 1066–1079 (2023).

    Google Scholar 

  16. Cai, P., Gao, J. & Zhou, Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb. Cell Fact. 18, 63 (2019).

    Google Scholar 

  17. Chen, F. Y. H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e914 (2020).

    Google Scholar 

  18. Nieh, L.-Y. et al. Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol. Nat. Commun. 15, 8840 (2024).

    Google Scholar 

  19. Reiter, M. A. et al. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol. Nat. Catal. 7, 560–573 (2024).

    Google Scholar 

  20. Zhan, C. et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat. Catal. 6, 435–450 (2023).

    Google Scholar 

  21. Guo, Y. et al. Engineering yeasts to co-utilize methanol or formate coupled with CO2 fixation. Metab. Eng. 84, 1–12 (2024).

    Google Scholar 

  22. Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).

    Google Scholar 

  23. Guo, F. et al. Evolutionary engineering of Saccharomyces cerevisiae: Crafting a synthetic methylotroph via self-reprogramming. Sci. Adv. 10, eadq3484 (2024).

    Google Scholar 

  24. Attfield, P. V. Stress tolerance: The key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 15, 1351–1357 (1997).

    Google Scholar 

  25. Nielsen, J. Yeast systems biology: model organism and cell factory. Biotechnol. J. 14, 1800421 (2019).

    Google Scholar 

  26. Lourens-Hattingh, A. & Viljoen, B. C. Growth and survival of a probiotic yeast in dairy products. Food Res. Int. 34, 791–796 (2001).

    Google Scholar 

  27. Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Syn. Syst. Biotechnol. 4, 180–188 (2019).

    Google Scholar 

  28. Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 1407–1412 (2017).

    Google Scholar 

  29. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Bi. 27, 441–464 (2011).

    Google Scholar 

  30. Lieven, C., Herrgård, M. J. & Sonnenschein, N. Microbial methylotrophic metabolism: Recent metabolic modeling efforts and their applications in industrial biotechnology. Biotechnol. J. 13, 1800011 (2018).

    Google Scholar 

  31. Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–288 (2020).

    Google Scholar 

  32. Gregory, G. J., Bennett, R. K. & Papoutsakis, E. T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab. Eng. 71, 99–116 (2022).

    Google Scholar 

  33. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Google Scholar 

  34. Yu, H. & Liao, J. C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat. Commun. 9, 3992 (2018).

    Google Scholar 

  35. He, H., Höper, R., Dodenhöft, M., Marlière, P. & Bar-Even, A. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab. Eng. 60, 1–13 (2020).

    Google Scholar 

  36. Wenk, S. et al. Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the serine threonine cycle. Metab. Eng. 88, 14–24 (2025).

    Google Scholar 

  37. Klein, V. J., Irla, M., Gil López, M., Brautaset, T. & Fernandes Brito, L. Unravelling formaldehyde metabolism in bacteria: Road towards synthetic methylotrophy. Microorganisms 10, 220 (2022).

    Google Scholar 

  38. Moioli, E., Mutschler, R. & Züttel, A. Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications. Renew. Sust. Enegr. Rev. 107, 497–506 (2019).

    Google Scholar 

  39. Zhu, Z., Kin Tam, T., Sun, F., You, C. & Percival Zhang, Y. H. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 5, 3026 (2014).

    Google Scholar 

  40. Ullah, A., Hashim, N. A., Rabuni, M. F. & Mohd Junaidi, M. U. A review on methanol as a clean energy carrier: Roles of zeolite in improving production efficiency. Energies 16, 1482 (2023).

    Google Scholar 

  41. Ozimek, P., Kötter, P., Veenhuis, M. & van der Klei, I. J. Hansenula polymorpha and Saccharomyces cerevisiae Pex5p’s recognize different, independent peroxisomal targeting signals in alcohol oxidase. FEBS Lett. 580, 46–50 (2006).

    Google Scholar 

  42. Zhong, W., Li, H. & Wang, Y. Design and construction of artificial biological systems for one-carbon utilization. BioDes. Res. 5, 0021 (2023).

    Google Scholar 

  43. Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U. & Ronne, H. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem. 268, 24346–24352 (1993).

    Google Scholar 

  44. Navarro-Aviño, J. P., Prasad, R., Miralles, V. J., Benito, R. M. & Serrano, R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829–842 (1999).

    Google Scholar 

  45. Ruiz-Amil, M., de Torrontegui, G., Palacián, E., Catalina, L. & Losada, M. Properties and function of yeast pyruvate carboxylase. J. Biol. Chem. 240, 3485–3492 (1965).

    Google Scholar 

  46. Qin, N. et al. Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat. Commun. 15, 1591 (2024).

    Google Scholar 

  47. Chandel, N. S. Glycolysis. Cold Spring Harb. Perspect. Biol. 13, a040535 (2021).

    Google Scholar 

  48. Kresnowati, M. T. A. P. et al. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Syst. Biol. 2, 49 (2006).

    Google Scholar 

  49. Byrne, K. P. & Wolfe, K. H. The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    Google Scholar 

  50. Xia, P. F. et al. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae. ACS Synth. Biol. 6, 276–283 (2017).

    Google Scholar 

  51. Papapetridis, I. et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol. Biofuels 11, 17–17 (2018).

    Google Scholar 

  52. Yasokawa, D. et al. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl. Biochem. Biotech. 160, 1685–1698 (2010).

    Google Scholar 

  53. Stingele, J. & Jentsch, S. DNA–protein crosslink repair. Nat. Rev. Mol. Cell Bio. 16, 455–460 (2015).

    Google Scholar 

  54. Falcone, C. & Mazzoni, C. External and internal triggers of cell death in yeast. Cell. Mol. Life Sci. 73, 2237–2250 (2016).

    Google Scholar 

  55. Carmona-Gutierrez, D. et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 17, 763–773 (2010).

    Google Scholar 

  56. Spégel, C. F. et al. Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Anal. Chem. 79, 8919–8926 (2007).

    Google Scholar 

  57. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme a from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).

    Google Scholar 

  58. Mao, Y. F. et al. Non-natural aldol reactions enable the design and construction of novel one-carbon assimilation pathways in vitro. Front. Microbiol. 12, 677596 (2021).

    Google Scholar 

  59. Nattermann, M. et al. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat. Commun. 14, 2682 (2023).

    Google Scholar 

  60. Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. WIREs RNA 6, 225–242 (2015).

    Google Scholar 

  61. Nomura, M. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 66, 555–565 (2001).

    Google Scholar 

  62. Berger, K. H. & Yaffe, M. P. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol 8, 508–513 (2000).

    Google Scholar 

  63. de Zamaroczy, M. & Bernardi, G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae – a review. Gene 47, 155–177 (1986).

    Google Scholar 

  64. Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1053 (2019).

    Google Scholar 

  65. Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123 (2015).

    Google Scholar 

  66. Evers, M. E., Harder, W. & Veenhuis, M. In vitro dissociation and re-assembly of peroxisomal alcohol oxidases of Hansenula polymorpha and Pichia pastoris. FEBS Lett. 368, 293–296 (1995).

    Google Scholar 

  67. Couderc, R. & Baratti, J. Oxidation of methanol by the yeast, Pichia pastoris. purification and properties of the alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289 (1980).

    Google Scholar 

  68. SchÜTte, H., Flossdorf, J., Sahm, H. & Kula, M.-R. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur. J. Biochem. 62, 151–160 (1976).

    Google Scholar 

  69. Degrassi, G., Uotila, L., Klima, R. & Venturi, V. Purification and properties of an esterase from the yeast Saccharomyces cerevisiae and identification of the encoding gene. Appl. Environ. Microbiol. 65, 3470–3472 (1999).

    Google Scholar 

  70. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  71. Overkamp, K. M. et al. Functional analysis of structural genes for NAD+-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19, 509–520 (2002).

    Google Scholar 

  72. Seah, T. C. M. & Kaplan, J. G. Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248, 2889–2893 (1973).

    Google Scholar 

  73. Ruuska, S. A., Badger, M. R., Andrews, T. J. & von Caemmerer, S. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J. Exp. Bot. 51, 357–368 (2000).

    Google Scholar 

  74. Yamori, W. & von Caemmerer, S. Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: Insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol. 151, 2073–2082 (2009).

    Google Scholar 

  75. Sulpice, R. et al. Description and applications of a rapid and sensitive non-radioactive microplate-based assay for maximum and initial activity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ. 30, 1163–1175 (2007).

    Google Scholar 

  76. MacElroy Robert, D., Mack Henry, M. & Johnson Emmett, J. Properties of phosphoribulokinase from Thiobacillus neapolitanus. J. Bacteriol. 112, 532–538 (1972).

    Google Scholar 

  77. Lee, J.-Y., Cheong, D.-E. & Kim, G.-J. A novel assay system for the measurement of transketolase activity using xylulokinase from Saccharomyces cerevisiae. Biotechnol. Lett. 30, 899–904 (2008).

    Google Scholar 

  78. Wang, X., Mann Craig, J., Bai, Y., Ni, L. & Weiner, H. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J. Bacteriol. 180, 822–830 (1998).

    Google Scholar 

  79. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔCT method. Methods 25, 402–408 (2001).

    Google Scholar 

  80. Burda, P. et al. Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase. Proc. Natl. Acad. Sci. USA 93, 7160–7165 (1996).

    Google Scholar 

  81. Wang, Y., Parsons, L. R. & Su, X. AccuCor2: isotope natural abundance correction for dual-isotope tracer experiments. Lab. Invest. 101, 1403–1410 (2021).

    Google Scholar 

  82. Cota-Sánchez, J. H., Remarchuk, K. & Ubayasena, K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol. Biol. Rep. 24, 161–167 (2006).

    Google Scholar 

  83. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Google Scholar 

  84. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    Google Scholar 

  85. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  86. Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl. Acad. Sci. USA 111, E5593–E5601 (2014).

    Google Scholar 

  87. Castell, C. H. & Smith, B. Measurement of formaldehyde in fish muscle using TCA extraction and the Nash reagent. J. Fish. Res. Board Can. 30, 91–98 (1973).

    Google Scholar 

  88. Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1, 332–349 (2020).

    Google Scholar 

  89. Sun, P., Zhang, H., Sun, Y. & Liu, J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. Spectrochim. Acta A. 245, 118919 (2021).

    Google Scholar 

  90. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 14, 513–520 (2017).

    Google Scholar 

  91. Yu, F. et al. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 19, 1575–1585 (2020).

    Google Scholar 

  92. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).

    Google Scholar 

  93. Beber, M. E. et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. 50, D603–D609 (2022).

    Google Scholar 

Download references