Engineering IL-21 secretion in T cells using druggable ligand-responsive stabilized domains

engineering-il-21-secretion-in-t-cells-using-druggable-ligand-responsive-stabilized-domains
Engineering IL-21 secretion in T cells using druggable ligand-responsive stabilized domains

References

  1. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Reviews Clin. Oncol. 19, 237–253 (2022).

    Google Scholar 

  2. Koh, C. H., Kim, B. S., Kang, C. Y., Chung, Y. & Seo, H. IL-17 and IL-21: Their immunobiology and therapeutic potentials. Immune Netw. 24, e2. https://doi.org/10.4110/in.2024.24.e2 (2024).

    Google Scholar 

  3. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Google Scholar 

  4. Gargett, T. et al. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J. Immunother. Cancer 10, e005187. https://doi.org/10.1136/jitc-2022-005187 (2022).

  5. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Google Scholar 

  6. Seo, H. et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017).

    Google Scholar 

  7. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Google Scholar 

  8. Kim, J. et al. Strategies to overcome hurdles in cancer immunotherapy. Biomaterials Res. 28, 0080 (2024).

    Google Scholar 

  9. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Google Scholar 

  10. Abhiraman, G. C. et al. A structural blueprint for interleukin-21 signal modulation. Cell. Rep. 42, 112657. https://doi.org/10.1016/j.celrep.2023.112657 (2023).

    Google Scholar 

  11. Vial, T. & Descotes, J. Clinical toxicity of cytokines used as Haemopoietic growth factors. Drug Saf. 13, 371–406 (1995).

    Google Scholar 

  12. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther.-Oncol. 3 (2016).

  13. Li, H. S. et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell. 40, 1294–1305 (2022).

    Google Scholar 

  14. Tateishi, Y. et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. Embo J. 23, 4813–4823. https://doi.org/10.1038/sj.emboj.7600472 (2004).

    Google Scholar 

  15. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004. https://doi.org/10.1016/j.cell.2006.07.025 (2006).

    Google Scholar 

  16. Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T. J. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17, 981–988. https://doi.org/10.1016/j.chembiol.2010.07.009 (2010).

    Google Scholar 

  17. Leonard, W. J. & Wan, C. K. IL-21 signaling in immunity. F1000Research 5 (2016).

  18. Attridge, K. et al. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119, 4656–4664. https://doi.org/10.1182/blood-2011-10-388546 (2012).

    Google Scholar 

  19. Berglund, L. J. et al. IL-21 signalling via STAT3 primes human Naive B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood 122, 3940–3950. https://doi.org/10.1182/blood-2013-06-506865 (2013).

    Google Scholar 

  20. Allard, E. L. et al. Overexpression of IL-21 promotes massive CD8 + memory T cell accumulation. Eur. J. Immunol. 37, 3069–3077 (2007).

    Google Scholar 

  21. Miyazaki, Y., Imoto, H., Chen, L. & Wandless, T. J. Destabilizing domains derived from the human estrogen receptor. J. Am. Chem. Soc. 134, 3942–3945 (2012).

    Google Scholar 

  22. Pelletier, J. N., Campbell-Valois, F. X. & Michnick, S. W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. 95, 12141–12146 (1998).

  23. Armstrong, C. M. & Goldberg, D. E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods. 4, 1007–1009 (2007).

    Google Scholar 

  24. Torres-López, L. et al. Tamoxifen induces toxicity, causes autophagy, and partially reverses dexamethasone resistance in Jurkat T cells. J. Leukoc. Biol. 105, 983–998. https://doi.org/10.1002/jlb.2vma0818-328r (2019).

    Google Scholar 

  25. Casey, K. A. & Mescher, M. F. IL-21 promotes differentiation of naive CD8 T cells to a unique effector phenotype. J. Immunol. 178, 7640–7648. https://doi.org/10.4049/jimmunol.178.12.7640 (2007).

    Google Scholar 

  26. Avery, D. T. et al. STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood 112, 1784–1793. https://doi.org/10.1182/blood-2008-02-142745 (2008).

    Google Scholar 

  27. Wan, C. K. et al. Opposing roles of STAT1 and STAT3 in IL-21 function in CD4(+) T cells. Proc. Natl. Acad. Sci. U.S.A. 112, 9394–9399. https://doi.org/10.1073/pnas.1511711112 (2015).

    Google Scholar 

  28. Wang, G. et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res. 63, 9016–9022 (2003).

    Google Scholar 

  29. Takaki, R. et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J. Immunol. 175, 2167–2173. https://doi.org/10.4049/jimmunol.175.4.2167 (2005).

    Google Scholar 

  30. Seo, H. et al. IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunol. Res. 6, 685–695. https://doi.org/10.1158/2326-6066.Cir-17-0708 (2018).

    Google Scholar 

  31. Chen, T., Ding, X. & Liao, Q. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer. 9, e001647. https://doi.org/10.1136/jitc-2020-001647corr1 (2021).

  32. Tian, Y. & Zajac, A. J. IL-21 and T cell differentiation: consider the context. Trends Immunol. 37, 557–568. https://doi.org/10.1016/j.it.2016.06.001 (2016).

    Google Scholar 

  33. Mahanta, P., Bhardwaj, A., Kumar, K., Reddy, V. & Ramakumar, S. Modulation of N-to C-terminal interactions enhances protein stability. arXiv preprint arXiv:1501.02709 (2015).

  34. Rankin, A. L. et al. IL-21 receptor is critical for the development of memory B cell responses. J. Immunol. 186, 667–674. https://doi.org/10.4049/jimmunol.0903207 (2011).

    Google Scholar 

  35. Koh, C. H. et al. GITR agonism triggers antitumor immune responses through IL21-Expressing follicular helper T cells. Cancer Immunol. Res. 8, 698–709. https://doi.org/10.1158/2326-6066.Cir-19-0748 (2020).

    Google Scholar 

  36. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Google Scholar 

  37. Ahn, T., Bae, E. A. & Seo, H. Decoding and overcoming T cell exhaustion: epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol. Ther. 32, 1617–1627 (2024).

    Google Scholar 

  38. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc. Natl. Acad. Sci. 116, 12410–12415 (2019).

    Google Scholar 

  39. Miyazaki, Y., Imoto, H., Chen, L. C. & Wandless, T. J. Destabilizing domains derived from the human estrogen receptor. J. Am. Chem. Soc. 134, 3942–3945. https://doi.org/10.1021/ja209933r (2012).

    Google Scholar 

  40. Baccanari, D. P., Averett, D., Briggs, C. & Burchall, J. Escherichia coli dihydrofolate reductase: Isolation and characterization of two isozymes. Biochemistry 16, 3566–3572. https://doi.org/10.1021/bi00635a010 (1977).

    Google Scholar 

  41. Jung, S. E., Moon, Y., Lim, M., Jeong, H. & Seo, H. Glucose-Enhanced cryopreservation of hCAR-T cells: Improved recovery and reduced apoptosis. Biomolecules Ther. 33, 963 (2025).

    Google Scholar 

  42. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  43. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Google Scholar 

  44. Brooks, B. R. et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Google Scholar 

  45. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys. J. 110, 641a (2016).

    Google Scholar 

  46. Lee, J. et al. CHARMM-GUI supports the amber force fields. J. Chem. Phys. 153 (2020).

  47. Case, D. A. et al. University of California, San Francisco. (2024).

  48. Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).

  49. Hou, T., Wang, J., Li, Y. & Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51, 69–82 (2011).

    Google Scholar 

  50. Miller, I. I. I. MMPBSA. Py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).

    Google Scholar 

Download references