References
-
Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Reviews Clin. Oncol. 19, 237–253 (2022).
-
Koh, C. H., Kim, B. S., Kang, C. Y., Chung, Y. & Seo, H. IL-17 and IL-21: Their immunobiology and therapeutic potentials. Immune Netw. 24, e2. https://doi.org/10.4110/in.2024.24.e2 (2024).
-
Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).
-
Gargett, T. et al. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J. Immunother. Cancer 10, e005187. https://doi.org/10.1136/jitc-2022-005187 (2022).
-
Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).
-
Seo, H. et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017).
-
Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).
-
Kim, J. et al. Strategies to overcome hurdles in cancer immunotherapy. Biomaterials Res. 28, 0080 (2024).
-
Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).
-
Abhiraman, G. C. et al. A structural blueprint for interleukin-21 signal modulation. Cell. Rep. 42, 112657. https://doi.org/10.1016/j.celrep.2023.112657 (2023).
-
Vial, T. & Descotes, J. Clinical toxicity of cytokines used as Haemopoietic growth factors. Drug Saf. 13, 371–406 (1995).
-
Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther.-Oncol. 3 (2016).
-
Li, H. S. et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell. 40, 1294–1305 (2022).
-
Tateishi, Y. et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. Embo J. 23, 4813–4823. https://doi.org/10.1038/sj.emboj.7600472 (2004).
-
Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004. https://doi.org/10.1016/j.cell.2006.07.025 (2006).
-
Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T. J. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17, 981–988. https://doi.org/10.1016/j.chembiol.2010.07.009 (2010).
-
Leonard, W. J. & Wan, C. K. IL-21 signaling in immunity. F1000Research 5 (2016).
-
Attridge, K. et al. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119, 4656–4664. https://doi.org/10.1182/blood-2011-10-388546 (2012).
-
Berglund, L. J. et al. IL-21 signalling via STAT3 primes human Naive B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood 122, 3940–3950. https://doi.org/10.1182/blood-2013-06-506865 (2013).
-
Allard, E. L. et al. Overexpression of IL-21 promotes massive CD8 + memory T cell accumulation. Eur. J. Immunol. 37, 3069–3077 (2007).
-
Miyazaki, Y., Imoto, H., Chen, L. & Wandless, T. J. Destabilizing domains derived from the human estrogen receptor. J. Am. Chem. Soc. 134, 3942–3945 (2012).
-
Pelletier, J. N., Campbell-Valois, F. X. & Michnick, S. W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. 95, 12141–12146 (1998).
-
Armstrong, C. M. & Goldberg, D. E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods. 4, 1007–1009 (2007).
-
Torres-López, L. et al. Tamoxifen induces toxicity, causes autophagy, and partially reverses dexamethasone resistance in Jurkat T cells. J. Leukoc. Biol. 105, 983–998. https://doi.org/10.1002/jlb.2vma0818-328r (2019).
-
Casey, K. A. & Mescher, M. F. IL-21 promotes differentiation of naive CD8 T cells to a unique effector phenotype. J. Immunol. 178, 7640–7648. https://doi.org/10.4049/jimmunol.178.12.7640 (2007).
-
Avery, D. T. et al. STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood 112, 1784–1793. https://doi.org/10.1182/blood-2008-02-142745 (2008).
-
Wan, C. K. et al. Opposing roles of STAT1 and STAT3 in IL-21 function in CD4(+) T cells. Proc. Natl. Acad. Sci. U.S.A. 112, 9394–9399. https://doi.org/10.1073/pnas.1511711112 (2015).
-
Wang, G. et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res. 63, 9016–9022 (2003).
-
Takaki, R. et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J. Immunol. 175, 2167–2173. https://doi.org/10.4049/jimmunol.175.4.2167 (2005).
-
Seo, H. et al. IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunol. Res. 6, 685–695. https://doi.org/10.1158/2326-6066.Cir-17-0708 (2018).
-
Chen, T., Ding, X. & Liao, Q. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer. 9, e001647. https://doi.org/10.1136/jitc-2020-001647corr1 (2021).
-
Tian, Y. & Zajac, A. J. IL-21 and T cell differentiation: consider the context. Trends Immunol. 37, 557–568. https://doi.org/10.1016/j.it.2016.06.001 (2016).
-
Mahanta, P., Bhardwaj, A., Kumar, K., Reddy, V. & Ramakumar, S. Modulation of N-to C-terminal interactions enhances protein stability. arXiv preprint arXiv:1501.02709 (2015).
-
Rankin, A. L. et al. IL-21 receptor is critical for the development of memory B cell responses. J. Immunol. 186, 667–674. https://doi.org/10.4049/jimmunol.0903207 (2011).
-
Koh, C. H. et al. GITR agonism triggers antitumor immune responses through IL21-Expressing follicular helper T cells. Cancer Immunol. Res. 8, 698–709. https://doi.org/10.1158/2326-6066.Cir-19-0748 (2020).
-
Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).
-
Ahn, T., Bae, E. A. & Seo, H. Decoding and overcoming T cell exhaustion: epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol. Ther. 32, 1617–1627 (2024).
-
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc. Natl. Acad. Sci. 116, 12410–12415 (2019).
-
Miyazaki, Y., Imoto, H., Chen, L. C. & Wandless, T. J. Destabilizing domains derived from the human estrogen receptor. J. Am. Chem. Soc. 134, 3942–3945. https://doi.org/10.1021/ja209933r (2012).
-
Baccanari, D. P., Averett, D., Briggs, C. & Burchall, J. Escherichia coli dihydrofolate reductase: Isolation and characterization of two isozymes. Biochemistry 16, 3566–3572. https://doi.org/10.1021/bi00635a010 (1977).
-
Jung, S. E., Moon, Y., Lim, M., Jeong, H. & Seo, H. Glucose-Enhanced cryopreservation of hCAR-T cells: Improved recovery and reduced apoptosis. Biomolecules Ther. 33, 963 (2025).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500 (2024).
-
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
-
Brooks, B. R. et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).
-
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys. J. 110, 641a (2016).
-
Lee, J. et al. CHARMM-GUI supports the amber force fields. J. Chem. Phys. 153 (2020).
-
Case, D. A. et al. University of California, San Francisco. (2024).
-
Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).
-
Hou, T., Wang, J., Li, Y. & Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51, 69–82 (2011).
-
Miller, I. I. I. MMPBSA. Py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).
