References
-
Filho, W. L. et al. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 755, 142732 (2021).
-
Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66, 167–178 (2021).
-
Bauer, F. et al. Plastics and climate change-Breaking carbon lock-ins through three mitigation pathways. One Earth 5, 361–376 (2022).
-
Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).
-
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
-
Jambeck, J. R. et al. Marine pollution. plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
-
Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 117, 25476–25485 (2020).
-
Moon, T. S. Earth: Extinguishing anthropogenic risks through harmonization. N. Biotechnol. 80, 69–71 (2024).
-
Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).
-
Schaerer, L. G. et al. Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. Trends Biotechnol. 41, 184–196 (2023).
-
Hu, Y., Tian, Y., Zou, C. & Moon, T. S. The current progress of tandem chemical and biological plastic upcycling. Biotechnol. Adv. 77, 108462 (2024).
-
Ng, K. W. J. et al. A facile alternative strategy of upcycling mixed plastic waste into vitrimers. Commun. Chem. 6, 158 (2023).
-
Zhang, Z. D. et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc. 145, 22836–22844 (2023).
-
Zou, C., Chen, J. W., Khan, M. A., Si, G. F. & Chen, C. L. Stapler strategies for upcycling mixed plastics. J. Am. Chem. Soc. 146, 19449–19459 (2024).
-
Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).
-
Dou, C. et al. A hybrid chemical-biological approach can upcycle mixed plastic waste with reduced cost and carbon footprint. One Earth 6, 1576–1590 (2023).
-
Wenk, S., Claassens, N. J. & Lindner, S. N. Synthetic metabolism approaches: a valuable resource for systems biology. Cur. Opin. Syst. Biol. 30, 100417 (2022).
-
Werner, J. J. et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 108, 4158–4163 (2011).
-
Lyu, X. et al. Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass. J. Ind. Microbiol Biotechnol. 51, kuae025 (2024).
-
Moon, T. S. SynMADE: synthetic microbiota across diverse ecosystems. Trends Biotechnol. 40, 1405–1414 (2022).
-
Moon, T. S. et al. Probiotic and microbiota engineering for practical applications. Curr. Opin. Food Sci. 56, 101130 (2024).
-
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
-
Putman, L. I. et al. Deconstructed plastic substrate preferences of microbial populations from the natural environment. Microbiol Spectr. 11, e0036223 (2023).
-
Schaerer, L. G. et al. Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste. J. Ind. Microbiol Biotechnol. 50, kuad008 (2023).
-
Byrne, E. et al. Pyrolysis-aided microbial biodegradation of high-density polyethylene plastic by environmental inocula enrichment cultures. Acs Sustain Chem. Eng. 10, 2022–2033 (2022).
-
Lomwongsopon, P., Narancic, T., Wimmer, R. & Varrone, C. Combined thermochemical-biotechnological approach for the valorization of polyolefins into polyhydroxyalkanoates: development of an integrated bioconversion process by microbial consortia. Chemosphere 367, 143671 (2024).
-
Bao, T., Qian, Y., Xin, Y., Collins, J. J. & Lu, T. Engineering microbial division of labor for plastic upcycling. Nat. Commun. 14, 5712 (2023).
-
Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).
-
Ballerstedt, H. et al. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environ. Sci. Eur. 33, 99 (2021).
-
Pifer, A. & Sen, A. Chemical recycling of plastics to useful organic compounds by oxidative degradation. Angew. Chem. Int Ed. Engl. 37, 3306–3308 (1998).
-
Pinsuwan, K., Opaprakasit, P., Petchsuk, A., Dubas, L. & Opaprakasit, M. Chemical recycling of high-density polyethylene (HDPE) wastes by oxidative degradation to dicarboxylic acids and their use as value-added curing agents for acrylate-based materials. Polym Degrad Stabil. 210, 110306 (2023).
-
Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res 56, 14814–14821 (2017).
-
Anthraper, D., McLaren, J., Baroutian, S., Munir, M. T. & Young, B. R. Hydrothermal deconstruction of municipal solid waste for solid reduction and value production. J. Clean. Prod. 201, 812–819 (2018).
-
Cho, S. M., Chang, H. M. & Park, S. Effects of hydrogen peroxide and sodium nitrate on microwave-assisted polyethylene oxidative degradation in the presence of nitric acid. Chem. Eng. J. 499, 155769 (2024).
-
Huang, Z. et al. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J. Am. Chem. Soc. 144, 6532–6542 (2022).
-
Diao, J., Hu, Y., Tian, Y., Carr, R. & Moon, T. S. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep. 42, 111908 (2023).
-
Zomorrodi, A. R. & Segre, D. Synthetic ecology of microbes: mathematical models and applications. J. Mol. Biol. 428, 837–861 (2016).
-
Shin, J. et al. Compositional and temporal division of labor modulates mixed sugar fermentation by an engineered yeast consortium. Nat. Commun. 15, 781 (2024).
-
McLeod, M. P. et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 103, 15582–15587 (2006).
-
Parke, D., Garcia, M. A. & Ornston, L. N. Cloning and genetic characterization of dca genes required for beta-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1. Appl Environ. Microbiol 67, 4817–4827 (2001).
-
Zhou, X. et al. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion. J. Environ. Chem. Eng. 11, 111016 (2023).
-
Rabot, C. et al. Conversion of polyethylenes into fungal secondary metabolites. Angew. Chem. Int Ed. 62, e202214609 (2023).
-
Cappelletti, M. et al. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biot. 104, 8567–8594 (2020).
-
Diao, J., Tian, Y., Hu, Y. & Moon, T. S. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol. 43, 620–646 (2024).
-
Santala, S. et al. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Micro Cell Fact. 10, 36 (2011).
-
Biggs, B. W. et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 48, 5169–5182 (2020).
-
Kusenberg, M. et al. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: to decontaminate or not to decontaminate? Waste Manag 138, 83–115 (2022).
-
Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).
-
Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).
-
Bunescu, A., Lee, S., Li, Q. & Hartwig, J. F. Catalytic hydroxylation of polyethylenes. ACS Cent. Sci. 3, 895–903 (2017).
-
Negari, M. S., Movahed, S. O. & Ahmadpour, A. Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique. Sep Purif. Technol. 194, 368–376 (2018).
-
Nicholas E. K., III. Method for separating polystyrene and polyethylene terephthalate. WO2002059189A2 (2002).
-
Li, C. L., Aston, J. E., Lacey, J. A., Thompson, V. S. & Thompson, D. N. Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sust. Energ. Rev. 65, 525–536 (2016).
-
Olawade, D. B. et al. Smart waste management: a paradigm shift enabled by artificial intelligence. Waste Management Bulletin 2, 244–263 (2024).
-
Aulakh, S. K. et al. Spontaneously established syntrophic yeast communities improve bioproduction. Nat. Chem. Biol. 19, 951–961 (2023).
-
Suarez, G. A. et al. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 48, 4585–4600 (2020).
-
Liu, X., Ding, W. & Jiang, H. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Micro Cell Fact. 16, 125 (2017).
-
Al Azad, S., Madadi, M., Song, G., Sun, C. & Sun, F. New trends in microbial lipid-based biorefinery for fermentative bioenergy production from lignocellulosic biomass. Biofuel Res. J. 11, 2040–2064 (2024).
-
Chen, X., Li, S. & Liu, L. Engineering redox balance through cofactor systems. Trends Biotechnol. 32, 337–343 (2014).
-
Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).
-
Areniello, M., Matassa, S., Esposito, G. & Lens, P. N. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol. 41, 197–213 (2023).
-
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
-
DeLorenzo, D. M., Henson, W. R. & Moon, T. S. Development of chemical and metabolite sensors for rhodococcus opacus PD630. ACS Synth. Biol. 6, 1973–1978 (2017).
