References
-
Nyström, T. Stationary-phase physiology. Annu. Rev. Microbiol. 58, 161–181 (2004).
-
Meunier, A., Cornet, F. & Campos, M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol. Rev. 45, fuaa046 (2021).
-
Gonzalez, J. M. & Aranda, B. Microbial growth under limiting conditions—future perspectives. Microorganisms 11, 1641 (2023).
-
Chan, C. T. Y., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016).
-
Stirling, F. et al. Rational design of evolutionarily stable microbial kill switches. Mol. Cell 68, 686–697.e3 (2017).
-
Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).
-
VanArsdale, E. et al. Electrogenetic signaling and information propagation for controlling microbial consortia via programmed lysis. Biotechnol. Bioeng. 120, 1366–1381 (2023).
-
Huang, S. et al. Coupling spatial segregation with synthetic circuits to control bacterial survival. Mol. Syst. Biol. 12, MSB156567 (2016).
-
Logsdon, M. M. & Aldridge, B. B. Stable regulation of cell cycle events in mycobacteria: Insights from inherently heterogeneous bacterial populations. Front. Microbiol. 9, 514 (2018).
-
Aldridge, B. B. et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100–104 (2011).
-
Oh, D. et al. Asymmetric polar localization dynamics of the serine chemoreceptor protein Tsr in Escherichia coli. PLoS ONE 13, e0195887 (2018).
-
Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134, 956–968 (2008).
-
Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl. Acad. Sci. USA. 105, 3076–3081 (2008).
-
Mushnikov, N. V., Fomicheva, A., Gomelsky, M. & Bowman, G. R. Inducible asymmetric cell division and cell differentiation in a bacterium. Nat. Chem. Biol. 15, 925–931 (2019).
-
Lin, D. W. et al. Construction of intracellular asymmetry and asymmetric division in Escherichia coli. Nat. Commun. 12, 888 (2021).
-
Hong, J. C. et al. Localized proteolysis for the construction of intracellular asymmetry in Escherichia coli. ACS Synth. Biol. 10, 1830–1836 (2021).
-
Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).
-
Saier, M. H. Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol. Bioeng. 58, 170–174 (1998).
-
Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95, 5752–5756 (1998).
-
Battesti, A. & Bouveret, E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58, 325–334 (2012).
-
Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2016).
-
Markwardt, M. L. et al. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS ONE 6, e17896 (2011).
-
Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia Coli cells. PLoS Biol. 16, e2003853 (2018).
-
Lee, S., Sowa, M. E., Choi, J. M. & Tsai, F. T. F. The ClpB/Hsp104 molecular chaperone—a protein disaggregating machine. J. Struct. Biol. 146, 99–105 (2004).
-
Doyle, S. M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).
-
Katikaridis, P., Bohl, V. & Mogk, A. Resisting the heat: bacterial disaggregases rescue cells from devastating protein aggregation. Front. Mol. Biosci. 8, 681439 (2021).
-
Lewis, M. Allostery and the lac operon. J. Mol. Biol. 425, 2309–2316 (2013).
-
Perlman, R. et al. The regulation of lac operon transcription by cyclic adenosine 3’, 5’-monophosphate. In Proc. Cold Spring Harbor Symposia on Quantitative Biology Vol. 35, 419–423 (Cold Spring Harbor Laboratory Press, 1970).
-
Maser, A., Peebo, K., Vilu, R. & Nahku, R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res. Microbiol. 171, 185–193 (2020).
-
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
-
Wiktor, J. et al. RecA finds homologous DNA by reduced dimensionality search. Nature 597, 426–429 (2021).
-
Kremers, G. J., Goedhart, J., Van Munster, E. B. & Gadella, T. W. J. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET förster radius. Biochemistry 45, 6570–6580 (2006).
-
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).
-
Chen, Y. J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).
-
Passaris, I., Tadesse, W. M., Gayán, E. & Aertsen, A. Construction and validation of the Tn5-PLtetO-1-msfGFP transposon as a tool to probe protein expression and localization. J. Microbiol. Methods 161, 56–62 (2019).
-
Aurélia Battesti, E. B. Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors. Proteomics 8, 4768–4771 (2008).
-
Mortier, J. et al. Gene erosion can lead to gain-of-function alleles that contribute to bacterial fitness. mBio 12, e01129-21 (2021).
-
Hopp, T. P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204–1210 (1988).
-
Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).
-
Elowitz, M. B. & Leibler, S. A. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).
-
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645 (2000).
-
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
-
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
-
Serif (Europe) Ltd. Affinity Designer v 1.9.1.979. https://www.affinity.studio/ (2019).
-
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
-
Todorov, H., Miguel Trabajo, T. & van der Meer, J. R. STrack: a tool to simply track bacterial cells in microscopy time-lapse images. mSphere 8, e00658-22 (2023).
-
RStudio Team. RStudio: integrated development environment for R. RStudio, PBC. http://www.rstudio.com/ (2025).
-
Mortier, J. et al. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell. Mol. Life Sci. 80, 360 (2023).
-
Truncated violin plots, scatter plots (and quadratic curve fitting), bar graphs and bulk growth curves were made using GraphPad Prism version 10.3.1 for Windows (64-bit), GraphPad Software. www.graphpad.com.
-
Van Eyken, R., Oome, D., Broux, K., Jordens, S., & Aertsen, A. Engineering non-exponential proliferation in Escherichia coli using functionalized protein aggregates. Zenodo, https://doi.org/10.5281/zenodo.15195477 (2026).
