Engineering the biophysical properties of lipid nanostructures for drug delivery

engineering-the-biophysical-properties-of-lipid-nanostructures-for-drug-delivery
Engineering the biophysical properties of lipid nanostructures for drug delivery
  • Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58, 1532–1555 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gatto, M. S., Johnson, M. P. & Najahi-Missaoui, W. Targeted liposomal drug delivery: overview of the current applications and challenges. Life 14, 672 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. et al. Surface modification of lipid-based nanoparticles. ACS Nano 16, 7168–7196 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. et al. Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv. Sci. 8, 2002589 (2021).

    Article  CAS  Google Scholar 

  • Shrestha, B., Tang, L. & Hood, R. L. Nanotechnology for personalized medicine, Nanomedicine, (Springer Nature, 2020).

  • Alghamdi, M. A. et al. The promise of nanotechnology in personalized medicine. J. Pers. Med. 12, 673 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed, N., Fessi, H. & Elaissari, A. Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. S. & Feijen, J. Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161, 473–483 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Caminade, A.-M. & Turrin, C.-O. Dendrimers for drug delivery. J. Mater. Chem. B 2, 4055–4066 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Li, B., Qiu, L., Qiao, X. & Yang, H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng. 16, 18 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan, A. S. Dendrimers for drug delivery. Molecules 23, 938 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article  PubMed  Google Scholar 

  • Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyhan, A. A. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl. Med. Commun. 4, 18 (2019).

    Article  Google Scholar 

  • Shahiwala, A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther. Deliv. 13, 205–209 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Joudeh, N. & Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 20, 262 (2022).

    Article  Google Scholar 

  • Sheikholeslami, B., Lam, N. W., Dua, K. & Haghi, M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci. 300, 120574 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, M. et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 46, 622–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dordević, S. et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 12, 500–525 (2022).

    Article  PubMed  Google Scholar 

  • Metselaar, J. M. & Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabizon, A. et al. Cancer nanomedicines: closing the translational gap. Lancet 384, 2175–2176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Nagayasu, A., Uchiyama, K. & Kiwada, H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 40, 75–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).

  • Azhar Shekoufeh Bahari, L. & Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull. 6, 143–51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahnke, K. & Staufer, O. Membranes on the move: the functional role of the extracellular vesicle membrane for contact-dependent cellular signalling. J. Extracell. Vesicles 13, e12436 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Ma, G. & Wei, W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater. 13, 52 (2021).

    Article  CAS  Google Scholar 

  • Choi, S. et al. Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci. Rep. 13, 4728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn, A., Vreeland, W. N., DeVoe, D. L., Locascio, L. E. & Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maja, L., Željko, K. & Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 165, 104984 (2020).

    Article  CAS  Google Scholar 

  • Wagner, V., Dullaart, A., Bock, A.-K. & Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Faraji, A. H. & Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17, 2950–2962 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bozzuto, G. & Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 10, 975–99 (2015).

    Article  CAS  Google Scholar 

  • Au, J. L. S., Yeung, B. Z., Wientjes, M. G., Lu, Z. & Wientjes, M. G. Delivery of cancer therapeutics to extracellular and intracellular targets: determinants, barriers, challenges and opportunities. Adv. Drug Deliv. Rev. 97, 280–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Achar, A., Myers, R. & Ghosh, C. Drug delivery challenges in brain disorders across the blood-brain barrier: novel methods and future considerations for improved therapy. Biomedicines 9, 1834 (2021).

  • Bors, L. A. & Erdö, F. Overcoming the blood-brain barrier. challenges and tricks for CNS drug delivery. Sci. Pharm. 87, 6 (2019).

    Article  Google Scholar 

  • Sigurdsson, H. H., Kirch, J. & Lehr, C.-M. Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 453, 56–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Witten, J. & Ribbeck, K. The particle in the spider’s web: transport through biological hydrogels. Nanoscale 9, 8080–8095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharm. 6, 219 (2015).

    Article  Google Scholar 

  • Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387–409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandian, S. R. K., Vijayakumar, K. K., Murugesan, S. & Kunjiappan, S. Liposomes: an emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon 8, e09575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C. et al. Lipid-based nanoparticles to address the limitations of gbm therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 171, 116113 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Velino, C. et al. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front. Bioeng. Biotechnol. 7, 406 (2019).

  • Beloqui, A., Solinís, M. N., Rodríguez-Gascón, A., Almeida, A. J. & Préat, V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12, 143–161 (2016).

    Article  CAS  Google Scholar 

  • Bodnár, K., Fehér, P., Ujhelyi, Z., Bácskay, I. & Józsa, L. Recent approaches for the topical treatment of psoriasis using nanoparticles. Pharmaceutics 16, 449 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Motsoene, F., Abrahamse, H. & Dhilip Kumar, S. S. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: a review. Adv. Colloid Interface Sci. 321, 103002 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Ahlawat, J. et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: challenges and possibilities. ACS Omega 5, 12583–12595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alajangi, H. K. et al. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol. Brain 15, 49 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommonte, F. et al. The complexity of the blood-brain barrier and the concept of age-related brain targeting: challenges and potential of novel solid lipid-based formulations. J. Pharm. Sci. 111, 577–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Markowicz-Piasecka, M. et al. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics 19, 942–976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlfart, S., Gelperina, S. & Kreuter, J. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control. Release 161, 264–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, R. G. R., Coutinho, A. J., Pinheiro, M. & Neves, A. R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci. 22, 11654 (2021).

  • Juhairiyah, F. & de Lange, E. C. M. Understanding drug delivery to the brain using liposome-based strategies: studies that provide mechanistic insights are essential. AAPS J. 23, 114 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Joshi, S. et al. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv. Transl. Res. 6, 225–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, Q. et al. Influence of nanoparticle size on blood-brain barrier penetration and the accumulation of anti-seizure medicines in the brain. J. Mater. Chem. B 10, 271–281 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Vieira, D. B. & Gamarra, L. F. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomed. 11, 5381–5414 (2016).

    Article  CAS  Google Scholar 

  • Johnsen, K. B. et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 7, 10396 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanada, S. et al. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int. J. Mol. Sci. 15, 1812–1825 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonavane, G., Tomoda, K. & Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces 66, 274–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pulgar, V. M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 12, 1019 (2019).

  • Yan, X. & Sha, X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics 15, 2457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fricker, G. et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm. Res. 27, 1469–1486 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Yu, T. et al. Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomedicine 11, 401–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Newby, J. M. et al. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev. 124, 64–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Song, D., Cahn, D. & Duncan, G. A. Mucin biopolymers and their barrier function at airway surfaces. Langmuir 36, 12773–12783 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Murgia, X., de Souza Carvalho, C. & Lehr, C.-M. Overcoming the pulmonary barrier: new insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 6, 157–169 (2014).

    Article  CAS  Google Scholar 

  • Dawson, M., Wirtz, D. & Hanes, J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J. Biol. Chem. 278, 50393–50401 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kirch, J. et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge-an ex vivo and in silico approach. J. Control. Release 159, 128–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Murgia, X. et al. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 17, 1536–1542 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bandi, S. P., Kumbhar, Y. S. & Venuganti, V. V. K. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J. Nanopart. Res. 22, 62 (2020).

    Article  CAS  Google Scholar 

  • Yildiz, H. M., McKelvey, C. A., Marsac, P. J. & Carrier, R. L. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J. Drug Target 23, 768–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian, D. A., Langer, R. & Traverso, G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J. Nanobiotechnol. 20, 362 (2022).

    Article  Google Scholar 

  • Guo, Y. et al. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments. ACS Nano 17, 2813–2828 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, e1601556 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell. Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).

    Article  PubMed  Google Scholar 

  • Wright, L., Barnes, T. J., Joyce, P. & Prestidge, C. A. Optimisation of a high-throughput model for mucus permeation and nanoparticle discrimination using biosimilar mucus. Pharmaceutics 14, 2659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izadifar, Z. et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv. Drug Deliv. Rev. 191, 114542 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Jia, Z., Guo, Z., Yang, C.-T., Prestidge, C. & Thierry, B. “Mucus-on-chip”: a new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int. J. Pharm. 598, 120391 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Friedl, H. et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J. Pharm. Sci. 102, 4406–4413 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Schreier, H. & Bouwstra, J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J. Control. Release 30, 1–15 (1994).

    Article  CAS  Google Scholar 

  • Zoabi, A., Touitou, E. & Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids Interfaces 5, 18 (2021).

    Article  CAS  Google Scholar 

  • Guillot, A. J., Martínez-Navarrete, M., Garrigues, T. M. & Melero, A. Skin drug delivery using lipid vesicles: a starting guideline for their development. J. Control. Release 355, 624–654 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Palmer, B. C. & DeLouise, L. A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21, 1719 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadgraft, J. Skin, the final frontier. Int. J. Pharm. 224, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zheng, A., Peng, B., Xu, Y. & Zhang, N. Size-dependent absorption through stratum corneum by drug-loaded liposomes. Pharm. Res. 38, 1429–1437 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Verma, D. D., Verma, S., Blume, G. & Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 258, 141–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Juliano, R. L. Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Adv. Drug Deliv. Rev. 2, 31–54 (1988).

    Article  CAS  Google Scholar 

  • Ishida, T., Harashima, H. & Kiwada, H. Liposome clearance. Biosci. Rep. 22, 197–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, N. & Leroux, J.-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release 161, 152–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Wang, Y., Wang, L., Jiang, W. & Wilhelm, S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin. Drug Deliv. 21, 829–843 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tavares, A. J. et al. Effect of removing kupffer cells on nanoparticle tumor delivery. Proc. Natl. Acad. Sci. USA 114, E10871–E10880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadauskas, E. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cataldi, M., Vigliotti, C., Mosca, T., Cammarota, M. & Capone, D. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int. J. Mol. Sci. 18, 1249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ernsting, M. J., Murakami, M., Roy, A. & Li, S.-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172, 782–794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, D., Mori, A. & Huang, L. Role of liposome size and res blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104, 95–101 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Zelepukin, I. V., Shevchenko, K. G. & Deyev, S. M. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat. Commun. 15, 4366 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (abc) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172, 38–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia, M. A. Better the devil you know than the devil you don’t – peg challenges in nanomedicine. Nat. Nanotechnol. 20, 580–583 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Ju, Y. & Kent, S. J. Balancing stealth and targeting to improve nanomedicine efficacy. Nat. Nanotechnol. 20, 576–579 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Kent, S. J. et al. Blood distribution of SARS-CoV-2 lipid nanoparticle mRNA vaccine in humans. ACS Nano 18, 27077–27089 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y. et al. Engineering poly(ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J. Am. Chem. Soc. 144, 18419–18428 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Pan, J. et al. Emerging strategies against accelerated blood clearance phenomenon of nanocarrier drug delivery systems. J. Nanobiotechnol. 23, 138 (2025).

    Article  CAS  Google Scholar 

  • Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  • Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med. 11, 771 (2021).

  • Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv. 4, 421–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Park, K. The drug delivery field at the inflection point: time to fight its way out of the egg. J. Control. Release 267, 2–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  • van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Bioengineering, N. R. It may all come down to the mechanisms of nanoparticle delivery. Nat. Rev. Bioeng. 2, 193–193 (2024).

    Article  Google Scholar 

  • Manzanares, D. & Ceña, V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12, 371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandek, T. B., van der Koog, L. & Nagelkerke, A. A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv. Healthc. Mater. 12, 2300319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercauteren, D. et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther. 18, 561–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  • McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Li, J., Lykotrafitis, G., Bao, G. & Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Andar, A. U., Hood, R. R., Vreeland, W. N., DeVoe, D. L. & Swaan, P. W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res. 31, 401–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • REJMAN, J., OBERLE, V., ZUHORN, I. S. & HOEKSTRA, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Chono, S., Tanino, T., Seki, T. & Morimoto, K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J. Drug Target. 14, 557–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A. et al. Elastic liposomes as novel carriers: recent advances in drug delivery. Int. J. Nanomed. 12, 5087–5108 (2017).

    Article  CAS  Google Scholar 

  • Nie, D. et al. Elasticity regulates nanomaterial transport as delivery vehicles: design, characterization, mechanisms and state of the art. Biomaterials 291, 121879 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Weiss, A.-V. & Schneider, M. Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems. Beilstein J. Nanotechnol. 14, 1149–1156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takechi-Haraya, Y., Goda, Y., Izutsu, K. & Sakai-Kato, K. Improved atomic force microscopy stiffness measurements of nanoscale liposomes by cantilever tip shape evaluation. Anal. Chem. 91, 10432–10440 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, D. et al. Differential flexibility leading to crucial microelastic properties of asymmetric lipid vesicles for cellular transfection: a combined spectroscopic and atomic force microscopy studies. Colloids Surf. B Biointerfaces 196, 111363 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Takechi-Haraya, Y., Goda, Y. & Sakai-Kato, K. Atomic force microscopy study on the stiffness of nanosized liposomes containing charged lipids. Langmuir 34, 7805–7812 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Benne, N. et al. Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory t cell responses. J. Control. Release 318, 246–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Dang, C.-Q., Zhu, W.-L. & Ju, B.-F. High-speed atomic force microscopy in ultra-precision surface machining and measurement: challenges, solutions and opportunities. Surf. Sci. Technol. 1, 7 (2023).

    Article  Google Scholar 

  • Evans, E. & Needham, D. Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 91, 4219–4228 (1987).

    Article  CAS  Google Scholar 

  • Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doskocz, J. et al. The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochim. Biophys. Acta 1862, 183361 (2020).

    Article  CAS  Google Scholar 

  • Takechi-Haraya, Y. et al. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir 32, 6074–6082 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Briuglia, M.-L., Rotella, C., McFarlane, A. & Lamprou, D. A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 5, 231–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Doole, F. T., Kumarage, T., Ashkar, R. & Brown, M. F. Cholesterol stiffening of lipid membranes. J. Membr. Biol. 255, 385–405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souto, E. B. et al. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int. J. Mol. Sci. 22, 9743 (2021).

  • Large, D. The Development of Hyper-Elastic Liposomes: A Platform for Tumor Drug Delivery. Thesis, Northeastern Univ. (2022).

  • Xu, J., Karra, V., Large, D. E., Auguste, D. T. & Hung, F. R. Understanding the mechanical properties of ultradeformable liposomes using molecular dynamics simulations. J. Phys. Chem. B 127, 9496–9512 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashtikar, M., Nagarsekar, K. & Fahr, A. Transdermal delivery from liposomal formulations – evolution of the technology over the last three decades. J. Control. Release 242, 126–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Boinapalli, Y., Pandey, R. S., Chauhan, A. S. & Sudheesh, M. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int. J. Pharm. 632, 122579 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Moghimi, S., Hunter, A. & Murray, J. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Li, L., Li, L., Song, F. & Song, F. Interplay of nanoparticle properties during endocytosis. Crystals 11, 728 (2021).

    Article  CAS  Google Scholar 

  • Sodimanage, C. I. & Schneider, M. The role of nanoparticle elasticity on biological hydrogel penetration. Pharmaceutics 17, 760 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickett, R. R. & Visscher, M. O. Structure and function of the epidermal barrier. Am. J. Infect. Control 34, S98–S110 (2006).

    Article  Google Scholar 

  • Riccardi, D., Baldino, L. & Reverchon, E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J. Transl. Med. 22, 339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan, N. et al. Ethosomes: a novel drug carrier. Ann. Med. Surg. 82, 104595 (2022).

    Article  Google Scholar 

  • Garg, V. et al. Ethosomes and transfersomes: principles, perspectives and practices. Curr. Drug Deliv. 14, 613–633 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Opatha, S. A. T., Titapiwatanakun, V. & Chutoprapat, R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 12, 855 (2020).

  • El Zaafarany, G. M., Awad, G. A. S., Holayel, S. M. & Mortada, N. D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 397, 164–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dudhipala, N., Phasha Mohammed, R., Adel Ali Youssef, A. & Banala, N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev. Ind. Pharm. 46, 1334–1344 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Cevc, G., Schätzlein, A. & Richardsen, H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta 1564, 21–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Walve, J., Bakliwal, S., Rane, B. & Pawar, S. Transfersomes: a surrogated carrier for transdermal drug delivery system. Int. J. Appl. Biol. Pharma. Technol. 2, 204–213 (2011).

  • Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. et al. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6, 6681–6686 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Asaro, R. J., Zhu, Q. & MacDonald, I. C. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech. Model. Mechanobiol. 20, 31–53 (2021).

    Article  PubMed  Google Scholar 

  • Kong, S. M., Costa, D. F., Jagielska, A., Van Vliet, K. J. & Hammond, P. T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl. Acad. Sci. USA 118, e2104826118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA 108, 586–591 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, K. et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS nano 10, 4421–4430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banquy, X. et al. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter 5, 3984–3991 (2009).

    Article  CAS  Google Scholar 

  • Kaur, I. P., Bhandari, R., Bhandari, S. & Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control Release 127, 97–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9, 223–243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickson, G. R. & Lyon, L. A. Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 49, 2193–2197 (2010).

    Article  CAS  Google Scholar 

  • Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X. et al. Influence of elasticity of hydrogel nanoparticles on their tumor delivery. Adv. Sci. 9, 2202644 (2022).

    Article  CAS  Google Scholar 

  • Hui, Y. et al. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci. Adv. 6, eaaz4316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, Y. et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano 16, 6527–6540 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Fu, J. et al. A simple but efficient tumor-targeted nanoparticle delivery system constructed by oleic acid. Drug Deliv. 29, 2539–2548 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, M. et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B 11, 2265–2285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash, S., Kumbhojkar, N., Clegg, J. R. & Mitragotri, S. Cell-bound nanoparticles for tissue targeting and immunotherapy: engineering of the particle-membrane interface. Curr. Opin. Colloid Interface Sci. 52, 101408 (2021).

    Article  CAS  Google Scholar 

  • Spangler, E. J., Upreti, S. & Laradji, M. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes. J. Chem. Phys. 144, 044901 (2016).

  • Kiio, T. M. & Park, S. Physical properties of nanoparticles do matter. J. Pharm. Investig. 51, 35–51 (2021).

    Article  CAS  Google Scholar 

  • Safford, H. C. et al. Probing the role of lipid nanoparticle elasticity on mRNA delivery to the placenta. Nano Lett. 25, 4800–4808 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Yi, X. & Gao, H. Incorporation of soft particles into lipid vesicles: Effects of particle size and elasticity. Langmuir 32, 13252–13260 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Yi, X., Shi, X. & Gao, H. Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107, 098101 (2011).

    Article  PubMed  Google Scholar 

  • Shen, Z., Ye, H., Yi, X. & Li, Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis: size and shape matter. ACS Nano 13, 215–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zou, D. et al. Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions. Proc. Natl. Acad. Sci. USA 120, e2214757120 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Ou, L., Yang, K. & Yuan, B. Energy and speed landscapes of the membrane internalization behavior of soft nanoparticles. J. Phys. Chem. B 128, 2632–2639 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Clogston, J. D. & Patri, A. K. Zeta Potential Measurement (Humana Press, 2011).

  • Németh, Z. et al. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 14, 1798 (2022).

  • Cui, S. et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 7, 473–479 (2018).

    Article  CAS  Google Scholar 

  • Juliano, R. L. & Stamp, D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun. 63, 651–658 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Shim, G., Kim, M.-G., Park, J. Y. & Oh, Y.-K. Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharm. Sci. 8, 72–80 (2013).

    CAS  Google Scholar 

  • Simões, S. et al. Cationic liposomes for gene delivery. Expert Opin. Drug Deliv. 2, 237–254 (2005).

    Article  PubMed  Google Scholar 

  • Tros de Ilarduya, C., Sun, Y. & Düzgüneş, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40, 159–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Li, H., Liu, Z. & Yuan, W. Lipopolyplex for therapeutic gene delivery and its application for the treatment of parkinson’s disease. Front. Aging Neurosci. 8, 68 (2016).

  • Barron, L. G., Uyechi, L. S. & Szoka, F. C. Cationic lipids are essential for gene delivery mediated by intravenous administration of lipoplexes. Gene Ther. 6, 1179–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Christensen, D. et al. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 6, 785–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Inglut, C. T. et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 10, 190 (2020).

  • Dowdy, S. F. Endosomal escape of rna therapeutics: How do we solve this rate-limiting problem? RNA 29, 396–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for lnp-mediated therapeutics. Proc. Natl. Acad. Sci. USA 121, e2307800120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug. Chem. 30, 263–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Vedadghavami, A., Zhang, C. & Bajpayee, A. G. Overcoming negatively charged tissue barriers: drug delivery using cationic peptides and proteins. Nano Today 34, 100898 (2020).

  • Abdel-Mottaleb, M. M. A., Moulari, B., Beduneau, A., Pellequer, Y. & Lamprecht, A. Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci. 101, 4231–4239 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. et al. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 13, 2154–2162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. et al. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin. Dev. 18, 751–764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wu, J. L. Y., Lazarovits, J. & Chan, W. C. W. An analysis of the binding function and structural organization of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).

    Article  PubMed  Google Scholar 

  • Yan, X., Scherphof, G. L. & Kamps, J. A. A. M. Liposome opsonization. J. Liposome Res. 15, 109–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chonn, A., Cullis, P. R. & Devine, D. V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Moghimi, S. M. & Patel, H. M. Modulation of murine liver macrophage clearance of liposomes by diethylstilbestrol. The effect of vesicle surface charge and a role for the complement receptor mac-1 (cd11b/cd18) of newly recruited macrophages in liposome recognition. J. Control. Release 78, 55–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Giulimondi, F. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levchenko, T. S., Rammohan, R., Lukyanov, A. N., Whiteman, K. R. & Torchilin, V. P. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240, 95–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tretiakova, D. et al. Protein corona of anionic fluid-phase liposomes compromises their integrity rather than uptake by cells. Membranes 13, 681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseu, G. Y. W. & Kamaruzaman, K. A. A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules 28, 1498 (2023).

  • Yang, K., Mesquita, B., Horvatovich, P. & Salvati, A. Tuning liposome composition to modulate corona formation in human serum and cellular uptake. Acta Biomater. 106, 314–327 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. et al. Looking back, moving forward: protein corona of lipid nanoparticles. J. Mater. Chem. B 12, 5573–5588 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Cisneros, E. P. et al. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J. Nanobiotechnol. 22, 714 (2024).

    Article  CAS  Google Scholar 

  • Canchola, A. et al. Meta-analysis and machine learning prediction of protein corona composition across nanoparticle systems in biological media. ACS Nano 19, 37633–37650 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Digiacomo, L., Pozzi, D., Palchetti, S., Zingoni, A. & Caracciolo, G. Impact of the protein corona on nanomaterial immune response and targeting ability. WIREs Nanomed. Nanobiotechnol. 12, e1615 (2020).

    Article  CAS  Google Scholar 

  • Younis, M. A., Sato, Y., Kimura, S. & Harashima, H. A new strategy for the extrahepatic delivery of lipid-based nanomedicines: a protein corona-mediated selective targeting system based on an ionizable cationic lipid library. RSC Pharm. 2, 982–1002 (2025).

    Article  CAS  Google Scholar 

  • Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalcanti, R. R. M., Lira, R. B. & Riske, K. A. Membrane fusion biophysical analysis of fusogenic liposomes. Langmuir 38, 10430–10441 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Kube, S. et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir 33, 1051–1059 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kolašinac, R. et al. Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. Nanomaterials 9, 1025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Q.-D. et al. Novel cationic lipids possessing protonated cyclen and imidazolium salt for gene delivery. Eur. J. Pharm. Biopharm. 78, 326–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Islam, R. U., Hean, J., van Otterlo, W. A. L., de Koning, C. B. & Arbuthnot, P. Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg. Med. Chem. Lett. 19, 100–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Han, X. et al. An ionizable lipid toolbox for rna delivery. Nat. Commun. 12, 7233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Swingle, K. L., Hamilton, A. G. & Mitchell, M. J. Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines. Trends Mol. Med. 27, 616–617 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.-Q. et al. Ionizable drug delivery systems for efficient and selective gene therapy. Mil. Med. Res. 10, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H.-M. et al. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int. J. Nanomed. 12, 1065–1083 (2017).

    Article  CAS  Google Scholar 

  • Tarahovsky, Y. S., Koynova, R. & MacDonald, R. C. Dna release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys. J. 87, 1054–1064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruner, S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665–3669 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bompard, J. et al. Membrane fluidity as a new means to selectively target cancer cells with fusogenic lipid carriers. Langmuir 36, 5134–5144 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Al Badri, Y. N., Chaw, C. S. & Elkordy, A. A. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics 15, 294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Solveyra, E. & Szleifer, I. What is the role of curvature on the properties of nanomaterials for biomedical applications? WIREs Nanomed. Nanobiotechnol. 8, 334–354 (2016).

    Article  Google Scholar 

  • McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golani, G. & Schwarz, U. S. High curvature promotes fusion of lipid membranes: predictions from continuum elastic theory. Biophys. J. 122, 1868–1882 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francia, V., Reker-Smit, C. & Salvati, A. Mechanisms of uptake and membrane curvature generation for the internalization of silica nanoparticles by cells. Nano Lett. 22, 3118–3124 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epand, R. M., D’Souza, K., Berno, B. & Schlame, M. Membrane curvature modulation of protein activity determined by NMR. Biochim. Biophys. Acta 1848, 220–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Jarsch, I. K., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Has, C. & Das, S. L. Recent developments in membrane curvature sensing and induction by proteins. Biochim. Biophys. Acta 1865, 129971 (2021).

    Article  CAS  Google Scholar 

  • Muller, M. P. et al. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 119, 6086–6161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release 164, 156–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Mashaghi, S., Jadidi, T., Koenderink, G. & Mashaghi, A. Lipid nanotechnology. Int. J. Mol. Sci. 14, 4242–4282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J. & Mao, S. Chapter three – Tuning the membrane fluidity of liposomes for desirable in vivo fate with enhanced drug delivery. Adv. Biomembr. Lipid Self-Assem. 34, 67–106 (2021).

  • Schaich, M., Sobota, D., Sleath, H., Cama, J. & Keyser, U. F. Characterization of lipid composition and diffusivity in OLA generated vesicles. Biochim.Biophys. Acta 1862, 183359 (2020).

    Article  CAS  Google Scholar 

  • Guo, L. et al. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. ChemPhysChem 9, 721–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pincet, F. et al. Frap to characterize molecular diffusion and interaction in various membrane environments. PLoS ONE 11, e0158457 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baccouch, R. et al. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochim. Biophys. Acta 1865, 184084 (2023).

    Article  CAS  Google Scholar 

  • Huang, Y.-Y., Chung, T.-W. & Wu, C.-I. Effect of saturated/unsaturated phosphatidylcholine ratio on the stability of liposome-encapsulated hemoglobin. Int. J. Pharm. 172, 161–167 (1998).

    Article  CAS  Google Scholar 

  • LaMastro, V., Campbell, K. M., Gonzalez, P., Meng-Saccoccio, T. & Shukla, A. Antifungal liposomes: Lipid saturation and cholesterol concentration impact interaction with fungal and mammalian cells. J. Biomed. Mater. Res A 111, 644–659 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666, 142–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hashiba, K. et al. Impact of lipid tail length on the organ selectivity of mRNA-lipid nanoparticles. Nano Lett. 24, 12758–12767 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Y. & Reinhard, B. M. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. Nanoscale 16, 8533–8545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys. 9, https://doi.org/10.3389/fphy.2021.644450 (2021).

  • Pabst, G. & Keller, S. Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem. Sci. 49, 333–345 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manno, S., Takakuwa, Y. & Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99, 1943–1948 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardea-Gutiérrez, D., Núñez-García, E., Oseguera-Guerra, B. E., Román-Aguirre, M. & Montes-Fonseca, S. L. Asymmetric lipid vesicles: techniques, applications, and future perspectives as an innovative drug delivery system. Pharmaceuticals 16, 777 (2023).

  • Yang, C. et al. Engineering asymmetric nanoscale vesicles for mRNA and protein delivery to cells. Adv. Funct. Mater. 35, 2505738 (2025).

  • Pautot, S., Frisken, B. J. & Weitz, D. A. Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. USA 100, 10718–10721 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Koog, L., Gandek, T. B. & Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 11, 2100639 (2022).

    Article  PubMed  Google Scholar 

  • Hossein, A. & Deserno, M. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys. J. 118, 624–642 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Jahnke, K. et al. Polysaccharide functionalization reduces lipid vesicle stiffness. Proc. Natl. Acad. Sci. USA 121, e2317227121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz, M. K. et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int. J. Mol. Sci. 19, 195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, A. A., Allemailem, K. S., Almatroodi, S. A., Almatroudi, A. & Rahmani, A. H. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 10, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

  • Shi, Y. et al. Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharm. Sin. B 12, 1126–1147 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lopes, D. et al. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil. Med. Res. 10, 19 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Luo, J., Chen, X., Liu, W. & Chen, T. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett. 11, 100 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y. et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. J. Nanobiotechnol. 20, 542 (2022).

    Article  CAS  Google Scholar 

  • Shao, M. et al. Exosome membrane-coated nanosystems: exploring biomedical applications in cancer diagnosis and therapy. Matter 6, 761–799 (2023).

    Article  CAS  Google Scholar 

  • Manno, M., Bongiovanni, A., Margolis, L., Bergese, P. & Arosio, P. The physico-chemical landscape of extracellular vesicles. Nat. Rev. Bioeng. 3, 68–82 (2025).

    Article  CAS  Google Scholar 

  • Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 10.1002/wnan.1450 (2017).

  • Zhang, A., Jung, K., Li, A., Liu, J. & Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 99, 101164 (2019).

    Article  CAS  Google Scholar 

  • Karimi, M. et al. pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 696–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells, C. M. et al. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater. 10, 34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangabad, P. S. et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 7, 95–122 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).

    Article  CAS  Google Scholar 

  • Forgham, H., Liu, L., Davis, T. P. & Qiao, R. Antifouling surface coatings for the next generation of nanomedicine: toward in vivo immune evasion. Nanomedicine 18, 1997–2000 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Chen, B.-Q. et al. Immune-regulating camouflaged nanoplatforms: a promising strategy to improve cancer nano-immunotherapy. Bioact. Mater. 21, 1–19 (2023).

    PubMed  Google Scholar 

  • Waeterschoot, J., Gosselé, W., Lemež, p & Casadevall i Solvas, X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat. Commun. 15, 2504 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huster, D., Maiti, S. & Herrmann, A. Phospholipid membranes as chemically and functionally tunable materials. Adv. Mater. 36, 2312898 (2024).

    Article  CAS  Google Scholar 

  • Ojansivu, M. et al. Formulation and characterization of novel ionizable and cationic lipid nanoparticles for the delivery of splice-switching oligonucleotides. Adv. Mater. 37, 2419538 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. et al. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem. Soc. Rev. 54, 5961–5994 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas, M., Campbell, R. A., Yanez Arteta, M., Lawrence, M. J. & Sebastiani, F. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Curr. Opin. Colloid Interface Sci. 66, 101705 (2023).

    Article  Google Scholar 

  • Koyra, N., Yu, H., Drummond, C. J., Zhai, J. & Dyett, B. Recent developments with pH-responsive lyotropic liquid crystalline lipid nanoparticles for targeted bioactive agent delivery. Expert Opin. Drug Deliv. 22, 1303–1324 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Li, S. et al. Polyphenol-mediated engineering of lipid nanoparticles with crystalline mesophases. Adv. Mater. e05830 (2025).

  • Yu, H., Dyett, B. P., Drummond, C. J. & Zhai, J. Ionizable lipid nanoparticles for mRNA delivery: internal self-assembled inverse mesophase structure and endosomal escape. Acc. Chem. Res. 58, 3210–3222 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Yap, S. L. et al. The internal nanostructure of lipid nanoparticles influences their diverse cellular uptake pathways. Small 21, 2500903 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl. Acad. Sci. USA 120, e2301067120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caselli, L., Conti, L., De Santis, I. & Berti, D. Small-angle x-ray and neutron scattering applied to lipid-based nanoparticles: recent advancements across different length scales. Adv. Colloid Interface Sci. 327, 103156 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Johansson, J. M. et al. Cellular and biophysical barriers to lipid nanoparticle mediated delivery of RNA to the cytosol. Nat. Commun. 16, 5354 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z. et al. Mechano-boosting nanomedicine antitumour efficacy by blocking the reticuloendothelial system with stiff nanogels. Nat. Commun. 14, 1437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Straten, D. et al. Biofluid specific protein coronas affect lipid nanoparticle behavior in vitro. J. Control. Release 373, 481–492 (2024).

    Article  PubMed  Google Scholar 

  • Aliyandi, A., Reker-Smit, C., Bron, R., Zuhorn, I. S. & Salvati, A. Correlating corona composition and cell uptake to identify proteins affecting nanoparticle entry into endothelial cells. ACS Biomater. Sci. Eng. 7, 5573–5584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliyandi, A., Zuhorn, I. S. & Salvati, A. Disentangling biomolecular corona interactions with cell receptors and implications for targeting of nanomedicines. Front. Bioeng. Biotechnol. 8, 599454 (2020).

  • Voke, E. et al. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. Nat. Commun. 16, 8699 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, J., Bastatas, L., Lee, E., Mutiso, K. T. & Park, S. Mechanical characterization of multi-layered lipid nanoparticles using high-resolution AFM force spectroscopy. J. Ind. Eng. Chem. 113, 283–292 (2022).

    Article  CAS  Google Scholar 

  • Kolbow, J. D., Lindquist, N. C., Ertsgaard, C. T., Yoo, D. & Oh, S.-H. Nano-optical tweezers: methods and applications for trapping single molecules and nanoparticles. ChemPhysChem 22, 1409–1420 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Gibson, R. F. A review of recent research on nanoindentation of polymer composites and their constituents. Compos. Sci. Technol. 105, 51–65 (2014).

    Article  CAS  Google Scholar 

  • Yang, F. et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat. Methods 20, 1971–1979 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvish, A. et al. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing. Nanoscale 8, 14420–14431 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Amodeo, J. & Pizzagalli, L. Modeling the mechanical properties of nanoparticles: a review. Comptes Rendus. Phys. 22, 35–66 (2021).

    Article  Google Scholar 

  • Chen, Y. et al. Microfluidic deformability cytometry: a review. Talanta 251, 123815 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Morshed, A., Dutta, P. & Kim, M. J. Electrophoretic transport and dynamic deformation of bio-vesicles. Electrophoresis 40, 2584–2591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar