Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).
Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).
Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58, 1532–1555 (2006).
Gatto, M. S., Johnson, M. P. & Najahi-Missaoui, W. Targeted liposomal drug delivery: overview of the current applications and challenges. Life 14, 672 (2024).
Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).
Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016).
Xu, Y. et al. Surface modification of lipid-based nanoparticles. ACS Nano 16, 7168–7196 (2022).
Li, Z. et al. Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv. Sci. 8, 2002589 (2021).
Shrestha, B., Tang, L. & Hood, R. L. Nanotechnology for personalized medicine, Nanomedicine, (Springer Nature, 2020).
Alghamdi, M. A. et al. The promise of nanotechnology in personalized medicine. J. Pers. Med. 12, 673 (2022).
Ahmed, N., Fessi, H. & Elaissari, A. Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012).
Lee, J. S. & Feijen, J. Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161, 473–483 (2012).
Caminade, A.-M. & Turrin, C.-O. Dendrimers for drug delivery. J. Mater. Chem. B 2, 4055–4066 (2014).
Wang, J., Li, B., Qiu, L., Qiao, X. & Yang, H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng. 16, 18 (2022).
Chauhan, A. S. Dendrimers for drug delivery. Molecules 23, 938 (2018).
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).
Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).
Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).
Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).
Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).
Seyhan, A. A. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl. Med. Commun. 4, 18 (2019).
Shahiwala, A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther. Deliv. 13, 205–209 (2022).
Joudeh, N. & Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 20, 262 (2022).
Sheikholeslami, B., Lam, N. W., Dua, K. & Haghi, M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci. 300, 120574 (2022).
Zhu, M. et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 46, 622–631 (2013).
Dordević, S. et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 12, 500–525 (2022).
Metselaar, J. M. & Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).
Gabizon, A. et al. Cancer nanomedicines: closing the translational gap. Lancet 384, 2175–2176 (2014).
Zhao, Z., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).
Nagayasu, A., Uchiyama, K. & Kiwada, H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 40, 75–87 (1999).
Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).
Azhar Shekoufeh Bahari, L. & Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull. 6, 143–51 (2016).
Jahnke, K. & Staufer, O. Membranes on the move: the functional role of the extracellular vesicle membrane for contact-dependent cellular signalling. J. Extracell. Vesicles 13, e12436 (2024).
Zhang, X., Ma, G. & Wei, W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater. 13, 52 (2021).
Choi, S. et al. Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci. Rep. 13, 4728 (2023).
Jahn, A., Vreeland, W. N., DeVoe, D. L., Locascio, L. E. & Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293 (2007).
Maja, L., Željko, K. & Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 165, 104984 (2020).
Wagner, V., Dullaart, A., Bock, A.-K. & Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006).
Faraji, A. H. & Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17, 2950–2962 (2009).
Bozzuto, G. & Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 10, 975–99 (2015).
Au, J. L. S., Yeung, B. Z., Wientjes, M. G., Lu, Z. & Wientjes, M. G. Delivery of cancer therapeutics to extracellular and intracellular targets: determinants, barriers, challenges and opportunities. Adv. Drug Deliv. Rev. 97, 280–301 (2016).
Achar, A., Myers, R. & Ghosh, C. Drug delivery challenges in brain disorders across the blood-brain barrier: novel methods and future considerations for improved therapy. Biomedicines 9, 1834 (2021).
Bors, L. A. & Erdö, F. Overcoming the blood-brain barrier. challenges and tricks for CNS drug delivery. Sci. Pharm. 87, 6 (2019).
Sigurdsson, H. H., Kirch, J. & Lehr, C.-M. Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 453, 56–64 (2013).
Witten, J. & Ribbeck, K. The particle in the spider’s web: transport through biological hydrogels. Nanoscale 9, 8080–8095 (2017).
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharm. 6, 219 (2015).
Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387–409 (2023).
Pandian, S. R. K., Vijayakumar, K. K., Murugesan, S. & Kunjiappan, S. Liposomes: an emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon 8, e09575 (2022).
Zhao, C. et al. Lipid-based nanoparticles to address the limitations of gbm therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 171, 116113 (2024).
Velino, C. et al. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front. Bioeng. Biotechnol. 7, 406 (2019).
Beloqui, A., Solinís, M. N., Rodríguez-Gascón, A., Almeida, A. J. & Préat, V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12, 143–161 (2016).
Bodnár, K., Fehér, P., Ujhelyi, Z., Bácskay, I. & Józsa, L. Recent approaches for the topical treatment of psoriasis using nanoparticles. Pharmaceutics 16, 449 (2024).
Motsoene, F., Abrahamse, H. & Dhilip Kumar, S. S. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: a review. Adv. Colloid Interface Sci. 321, 103002 (2023).
Ahlawat, J. et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: challenges and possibilities. ACS Omega 5, 12583–12595 (2020).
Alajangi, H. K. et al. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol. Brain 15, 49 (2022).
Sommonte, F. et al. The complexity of the blood-brain barrier and the concept of age-related brain targeting: challenges and potential of novel solid lipid-based formulations. J. Pharm. Sci. 111, 577–592 (2022).
Markowicz-Piasecka, M. et al. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics 19, 942–976 (2022).
Wohlfart, S., Gelperina, S. & Kreuter, J. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control. Release 161, 264–273 (2012).
Pinheiro, R. G. R., Coutinho, A. J., Pinheiro, M. & Neves, A. R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci. 22, 11654 (2021).
Juhairiyah, F. & de Lange, E. C. M. Understanding drug delivery to the brain using liposome-based strategies: studies that provide mechanistic insights are essential. AAPS J. 23, 114 (2021).
Joshi, S. et al. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv. Transl. Res. 6, 225–233 (2016).
Meng, Q. et al. Influence of nanoparticle size on blood-brain barrier penetration and the accumulation of anti-seizure medicines in the brain. J. Mater. Chem. B 10, 271–281 (2022).
Vieira, D. B. & Gamarra, L. F. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomed. 11, 5381–5414 (2016).
Johnsen, K. B. et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 7, 10396 (2017).
Hanada, S. et al. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int. J. Mol. Sci. 15, 1812–1825 (2014).
Sonavane, G., Tomoda, K. & Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces 66, 274–280 (2008).
Pulgar, V. M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 12, 1019 (2019).
Yan, X. & Sha, X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics 15, 2457 (2023).
Fricker, G. et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm. Res. 27, 1469–1486 (2010).
Yu, T. et al. Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomedicine 11, 401–405 (2015).
Newby, J. M. et al. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev. 124, 64–81 (2018).
Song, D., Cahn, D. & Duncan, G. A. Mucin biopolymers and their barrier function at airway surfaces. Langmuir 36, 12773–12783 (2020).
Murgia, X., de Souza Carvalho, C. & Lehr, C.-M. Overcoming the pulmonary barrier: new insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 6, 157–169 (2014).
Dawson, M., Wirtz, D. & Hanes, J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J. Biol. Chem. 278, 50393–50401 (2003).
Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).
Kirch, J. et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge-an ex vivo and in silico approach. J. Control. Release 159, 128–134 (2012).
Murgia, X. et al. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 17, 1536–1542 (2016).
Bandi, S. P., Kumbhar, Y. S. & Venuganti, V. V. K. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J. Nanopart. Res. 22, 62 (2020).
Yildiz, H. M., McKelvey, C. A., Marsac, P. J. & Carrier, R. L. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J. Drug Target 23, 768–74 (2015).
Subramanian, D. A., Langer, R. & Traverso, G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J. Nanobiotechnol. 20, 362 (2022).
Guo, Y. et al. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments. ACS Nano 17, 2813–2828 (2023).
Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, e1601556 (2017).
Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell. Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).
Wright, L., Barnes, T. J., Joyce, P. & Prestidge, C. A. Optimisation of a high-throughput model for mucus permeation and nanoparticle discrimination using biosimilar mucus. Pharmaceutics 14, 2659 (2022).
Izadifar, Z. et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv. Drug Deliv. Rev. 191, 114542 (2022).
Jia, Z., Guo, Z., Yang, C.-T., Prestidge, C. & Thierry, B. “Mucus-on-chip”: a new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int. J. Pharm. 598, 120391 (2021).
Friedl, H. et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J. Pharm. Sci. 102, 4406–4413 (2013).
Schreier, H. & Bouwstra, J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J. Control. Release 30, 1–15 (1994).
Zoabi, A., Touitou, E. & Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids Interfaces 5, 18 (2021).
Guillot, A. J., Martínez-Navarrete, M., Garrigues, T. M. & Melero, A. Skin drug delivery using lipid vesicles: a starting guideline for their development. J. Control. Release 355, 624–654 (2023).
Palmer, B. C. & DeLouise, L. A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21, 1719 (2016).
Hadgraft, J. Skin, the final frontier. Int. J. Pharm. 224, 1–18 (2001).
Liu, J., Zheng, A., Peng, B., Xu, Y. & Zhang, N. Size-dependent absorption through stratum corneum by drug-loaded liposomes. Pharm. Res. 38, 1429–1437 (2021).
Verma, D. D., Verma, S., Blume, G. & Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 258, 141–151 (2003).
Juliano, R. L. Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Adv. Drug Deliv. Rev. 2, 31–54 (1988).
Ishida, T., Harashima, H. & Kiwada, H. Liposome clearance. Biosci. Rep. 22, 197–224 (2002).
Bertrand, N. & Leroux, J.-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release 161, 152–163 (2012).
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).
He, Y., Wang, Y., Wang, L., Jiang, W. & Wilhelm, S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin. Drug Deliv. 21, 829–843 (2024).
Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).
Tavares, A. J. et al. Effect of removing kupffer cells on nanoparticle tumor delivery. Proc. Natl. Acad. Sci. USA 114, E10871–E10880 (2017).
Sadauskas, E. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007).
Cataldi, M., Vigliotti, C., Mosca, T., Cammarota, M. & Capone, D. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int. J. Mol. Sci. 18, 1249 (2017).
Ernsting, M. J., Murakami, M., Roy, A. & Li, S.-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172, 782–794 (2013).
Liu, D., Mori, A. & Huang, L. Role of liposome size and res blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104, 95–101 (1992).
Zelepukin, I. V., Shevchenko, K. G. & Deyev, S. M. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat. Commun. 15, 4366 (2024).
Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).
Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).
Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (abc) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172, 38–47 (2013).
Dobrovolskaia, M. A. Better the devil you know than the devil you don’t – peg challenges in nanomedicine. Nat. Nanotechnol. 20, 580–583 (2025).
Ju, Y. & Kent, S. J. Balancing stealth and targeting to improve nanomedicine efficacy. Nat. Nanotechnol. 20, 576–579 (2025).
Kent, S. J. et al. Blood distribution of SARS-CoV-2 lipid nanoparticle mRNA vaccine in humans. ACS Nano 18, 27077–27089 (2024).
Tian, Y. et al. Engineering poly(ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J. Am. Chem. Soc. 144, 18419–18428 (2022).
Pan, J. et al. Emerging strategies against accelerated blood clearance phenomenon of nanocarrier drug delivery systems. J. Nanobiotechnol. 23, 138 (2025).
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).
Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med. 11, 771 (2021).
Stylianopoulos, T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv. 4, 421–423 (2013).
Park, K. The drug delivery field at the inflection point: time to fight its way out of the egg. J. Control. Release 267, 2–14 (2017).
van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).
Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).
Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).
Bioengineering, N. R. It may all come down to the mechanisms of nanoparticle delivery. Nat. Rev. Bioeng. 2, 193–193 (2024).
Manzanares, D. & Ceña, V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12, 371 (2020).
Gandek, T. B., van der Koog, L. & Nagelkerke, A. A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles. Adv. Healthc. Mater. 12, 2300319 (2023).
Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).
Vercauteren, D. et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther. 18, 561–569 (2010).
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
Zhang, S., Li, J., Lykotrafitis, G., Bao, G. & Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009).
Andar, A. U., Hood, R. R., Vreeland, W. N., DeVoe, D. L. & Swaan, P. W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res. 31, 401–413 (2014).
Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).
REJMAN, J., OBERLE, V., ZUHORN, I. S. & HOEKSTRA, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).
Chono, S., Tanino, T., Seki, T. & Morimoto, K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J. Drug Target. 14, 557–566 (2006).
Hussain, A. et al. Elastic liposomes as novel carriers: recent advances in drug delivery. Int. J. Nanomed. 12, 5087–5108 (2017).
Nie, D. et al. Elasticity regulates nanomaterial transport as delivery vehicles: design, characterization, mechanisms and state of the art. Biomaterials 291, 121879 (2022).
Weiss, A.-V. & Schneider, M. Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems. Beilstein J. Nanotechnol. 14, 1149–1156 (2023).
Takechi-Haraya, Y., Goda, Y., Izutsu, K. & Sakai-Kato, K. Improved atomic force microscopy stiffness measurements of nanoscale liposomes by cantilever tip shape evaluation. Anal. Chem. 91, 10432–10440 (2019).
Mukherjee, D. et al. Differential flexibility leading to crucial microelastic properties of asymmetric lipid vesicles for cellular transfection: a combined spectroscopic and atomic force microscopy studies. Colloids Surf. B Biointerfaces 196, 111363 (2020).
Takechi-Haraya, Y., Goda, Y. & Sakai-Kato, K. Atomic force microscopy study on the stiffness of nanosized liposomes containing charged lipids. Langmuir 34, 7805–7812 (2018).
Benne, N. et al. Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory t cell responses. J. Control. Release 318, 246–255 (2020).
Yang, C., Dang, C.-Q., Zhu, W.-L. & Ju, B.-F. High-speed atomic force microscopy in ultra-precision surface machining and measurement: challenges, solutions and opportunities. Surf. Sci. Technol. 1, 7 (2023).
Evans, E. & Needham, D. Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 91, 4219–4228 (1987).
Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).
Doskocz, J. et al. The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochim. Biophys. Acta 1862, 183361 (2020).
Takechi-Haraya, Y. et al. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir 32, 6074–6082 (2016).
Briuglia, M.-L., Rotella, C., McFarlane, A. & Lamprou, D. A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 5, 231–242 (2015).
Doole, F. T., Kumarage, T., Ashkar, R. & Brown, M. F. Cholesterol stiffening of lipid membranes. J. Membr. Biol. 255, 385–405 (2022).
Souto, E. B. et al. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int. J. Mol. Sci. 22, 9743 (2021).
Large, D. The Development of Hyper-Elastic Liposomes: A Platform for Tumor Drug Delivery. Thesis, Northeastern Univ. (2022).
Xu, J., Karra, V., Large, D. E., Auguste, D. T. & Hung, F. R. Understanding the mechanical properties of ultradeformable liposomes using molecular dynamics simulations. J. Phys. Chem. B 127, 9496–9512 (2023).
Ashtikar, M., Nagarsekar, K. & Fahr, A. Transdermal delivery from liposomal formulations – evolution of the technology over the last three decades. J. Control. Release 242, 126–140 (2016).
Boinapalli, Y., Pandey, R. S., Chauhan, A. S. & Sudheesh, M. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int. J. Pharm. 632, 122579 (2023).
Moghimi, S., Hunter, A. & Murray, J. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).
Wang, X., Li, L., Li, L., Song, F. & Song, F. Interplay of nanoparticle properties during endocytosis. Crystals 11, 728 (2021).
Sodimanage, C. I. & Schneider, M. The role of nanoparticle elasticity on biological hydrogel penetration. Pharmaceutics 17, 760 (2025).
Wickett, R. R. & Visscher, M. O. Structure and function of the epidermal barrier. Am. J. Infect. Control 34, S98–S110 (2006).
Riccardi, D., Baldino, L. & Reverchon, E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J. Transl. Med. 22, 339 (2024).
Chauhan, N. et al. Ethosomes: a novel drug carrier. Ann. Med. Surg. 82, 104595 (2022).
Garg, V. et al. Ethosomes and transfersomes: principles, perspectives and practices. Curr. Drug Deliv. 14, 613–633 (2017).
Opatha, S. A. T., Titapiwatanakun, V. & Chutoprapat, R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 12, 855 (2020).
El Zaafarany, G. M., Awad, G. A. S., Holayel, S. M. & Mortada, N. D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 397, 164–172 (2010).
Dudhipala, N., Phasha Mohammed, R., Adel Ali Youssef, A. & Banala, N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev. Ind. Pharm. 46, 1334–1344 (2020).
Cevc, G., Schätzlein, A. & Richardsen, H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta 1564, 21–30 (2002).
Walve, J., Bakliwal, S., Rane, B. & Pawar, S. Transfersomes: a surrogated carrier for transdermal drug delivery system. Int. J. Appl. Biol. Pharma. Technol. 2, 204–213 (2011).
Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).
Zhang, L. et al. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6, 6681–6686 (2012).
Asaro, R. J., Zhu, Q. & MacDonald, I. C. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech. Model. Mechanobiol. 20, 31–53 (2021).
Kong, S. M., Costa, D. F., Jagielska, A., Van Vliet, K. J. & Hammond, P. T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl. Acad. Sci. USA 118, e2104826118 (2021).
Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA 108, 586–591 (2011).
Saha, K. et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS nano 10, 4421–4430 (2016).
Banquy, X. et al. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter 5, 3984–3991 (2009).
Kaur, I. P., Bhandari, R., Bhandari, S. & Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control Release 127, 97–109 (2008).
Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9, 223–243 (2014).
Hendrickson, G. R. & Lyon, L. A. Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 49, 2193–2197 (2010).
Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).
Chen, X. et al. Influence of elasticity of hydrogel nanoparticles on their tumor delivery. Adv. Sci. 9, 2202644 (2022).
Hui, Y. et al. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci. Adv. 6, eaaz4316 (2020).
Miao, Y. et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano 16, 6527–6540 (2022).
Fu, J. et al. A simple but efficient tumor-targeted nanoparticle delivery system constructed by oleic acid. Drug Deliv. 29, 2539–2548 (2022).
Zhang, M. et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B 11, 2265–2285 (2021).
Prakash, S., Kumbhojkar, N., Clegg, J. R. & Mitragotri, S. Cell-bound nanoparticles for tissue targeting and immunotherapy: engineering of the particle-membrane interface. Curr. Opin. Colloid Interface Sci. 52, 101408 (2021).
Spangler, E. J., Upreti, S. & Laradji, M. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes. J. Chem. Phys. 144, 044901 (2016).
Kiio, T. M. & Park, S. Physical properties of nanoparticles do matter. J. Pharm. Investig. 51, 35–51 (2021).
Safford, H. C. et al. Probing the role of lipid nanoparticle elasticity on mRNA delivery to the placenta. Nano Lett. 25, 4800–4808 (2025).
Yi, X. & Gao, H. Incorporation of soft particles into lipid vesicles: Effects of particle size and elasticity. Langmuir 32, 13252–13260 (2016).
Yi, X., Shi, X. & Gao, H. Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107, 098101 (2011).
Shen, Z., Ye, H., Yi, X. & Li, Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis: size and shape matter. ACS Nano 13, 215–228 (2019).
Zou, D. et al. Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions. Proc. Natl. Acad. Sci. USA 120, e2214757120 (2023).
Zhang, Z., Ou, L., Yang, K. & Yuan, B. Energy and speed landscapes of the membrane internalization behavior of soft nanoparticles. J. Phys. Chem. B 128, 2632–2639 (2024).
Clogston, J. D. & Patri, A. K. Zeta Potential Measurement (Humana Press, 2011).
Németh, Z. et al. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 14, 1798 (2022).
Cui, S. et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 7, 473–479 (2018).
Juliano, R. L. & Stamp, D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun. 63, 651–658 (1975).
Shim, G., Kim, M.-G., Park, J. Y. & Oh, Y.-K. Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharm. Sci. 8, 72–80 (2013).
Simões, S. et al. Cationic liposomes for gene delivery. Expert Opin. Drug Deliv. 2, 237–254 (2005).
Tros de Ilarduya, C., Sun, Y. & Düzgüneş, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40, 159–70 (2010).
Chen, W., Li, H., Liu, Z. & Yuan, W. Lipopolyplex for therapeutic gene delivery and its application for the treatment of parkinson’s disease. Front. Aging Neurosci. 8, 68 (2016).
Barron, L. G., Uyechi, L. S. & Szoka, F. C. Cationic lipids are essential for gene delivery mediated by intravenous administration of lipoplexes. Gene Ther. 6, 1179–1183 (1999).
Christensen, D. et al. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 6, 785–796 (2007).
Inglut, C. T. et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 10, 190 (2020).
Dowdy, S. F. Endosomal escape of rna therapeutics: How do we solve this rate-limiting problem? RNA 29, 396–401 (2023).
Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for lnp-mediated therapeutics. Proc. Natl. Acad. Sci. USA 121, e2307800120 (2024).
Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug. Chem. 30, 263–272 (2019).
Vedadghavami, A., Zhang, C. & Bajpayee, A. G. Overcoming negatively charged tissue barriers: drug delivery using cationic peptides and proteins. Nano Today 34, 100898 (2020).
Abdel-Mottaleb, M. M. A., Moulari, B., Beduneau, A., Pellequer, Y. & Lamprecht, A. Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci. 101, 4231–4239 (2012).
Yang, Y. et al. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 13, 2154–2162 (2012).
Liu, C. et al. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin. Dev. 18, 751–764 (2020).
Zhang, Y., Wu, J. L. Y., Lazarovits, J. & Chan, W. C. W. An analysis of the binding function and structural organization of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).
Yan, X., Scherphof, G. L. & Kamps, J. A. A. M. Liposome opsonization. J. Liposome Res. 15, 109–139 (2005).
Chonn, A., Cullis, P. R. & Devine, D. V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991).
Moghimi, S. M. & Patel, H. M. Modulation of murine liver macrophage clearance of liposomes by diethylstilbestrol. The effect of vesicle surface charge and a role for the complement receptor mac-1 (cd11b/cd18) of newly recruited macrophages in liposome recognition. J. Control. Release 78, 55–65 (2002).
Giulimondi, F. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).
Levchenko, T. S., Rammohan, R., Lukyanov, A. N., Whiteman, K. R. & Torchilin, V. P. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240, 95–102 (2002).
Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).
Tretiakova, D. et al. Protein corona of anionic fluid-phase liposomes compromises their integrity rather than uptake by cells. Membranes 13, 681 (2023).
Tseu, G. Y. W. & Kamaruzaman, K. A. A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules 28, 1498 (2023).
Yang, K., Mesquita, B., Horvatovich, P. & Salvati, A. Tuning liposome composition to modulate corona formation in human serum and cellular uptake. Acta Biomater. 106, 314–327 (2020).
Gao, Y. et al. Looking back, moving forward: protein corona of lipid nanoparticles. J. Mater. Chem. B 12, 5573–5588 (2024).
Cisneros, E. P. et al. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J. Nanobiotechnol. 22, 714 (2024).
Canchola, A. et al. Meta-analysis and machine learning prediction of protein corona composition across nanoparticle systems in biological media. ACS Nano 19, 37633–37650 (2025).
Digiacomo, L., Pozzi, D., Palchetti, S., Zingoni, A. & Caracciolo, G. Impact of the protein corona on nanomaterial immune response and targeting ability. WIREs Nanomed. Nanobiotechnol. 12, e1615 (2020).
Younis, M. A., Sato, Y., Kimura, S. & Harashima, H. A new strategy for the extrahepatic delivery of lipid-based nanomedicines: a protein corona-mediated selective targeting system based on an ionizable cationic lipid library. RSC Pharm. 2, 982–1002 (2025).
Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).
Cavalcanti, R. R. M., Lira, R. B. & Riske, K. A. Membrane fusion biophysical analysis of fusogenic liposomes. Langmuir 38, 10430–10441 (2022).
Kube, S. et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir 33, 1051–1059 (2017).
Kolašinac, R. et al. Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. Nanomaterials 9, 1025 (2019).
Huang, Q.-D. et al. Novel cationic lipids possessing protonated cyclen and imidazolium salt for gene delivery. Eur. J. Pharm. Biopharm. 78, 326–335 (2011).
Islam, R. U., Hean, J., van Otterlo, W. A. L., de Koning, C. B. & Arbuthnot, P. Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg. Med. Chem. Lett. 19, 100–103 (2009).
Han, X. et al. An ionizable lipid toolbox for rna delivery. Nat. Commun. 12, 7233 (2021).
Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).
Swingle, K. L., Hamilton, A. G. & Mitchell, M. J. Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines. Trends Mol. Med. 27, 616–617 (2021).
Zhang, Y.-Q. et al. Ionizable drug delivery systems for efficient and selective gene therapy. Mil. Med. Res. 10, 9 (2023).
Liu, H.-M. et al. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int. J. Nanomed. 12, 1065–1083 (2017).
Tarahovsky, Y. S., Koynova, R. & MacDonald, R. C. Dna release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys. J. 87, 1054–1064 (2004).
Gruner, S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665–3669 (1985).
Bompard, J. et al. Membrane fluidity as a new means to selectively target cancer cells with fusogenic lipid carriers. Langmuir 36, 5134–5144 (2020).
Al Badri, Y. N., Chaw, C. S. & Elkordy, A. A. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics 15, 294 (2023).
Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).
Gonzalez Solveyra, E. & Szleifer, I. What is the role of curvature on the properties of nanomaterials for biomedical applications? WIREs Nanomed. Nanobiotechnol. 8, 334–354 (2016).
McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).
Golani, G. & Schwarz, U. S. High curvature promotes fusion of lipid membranes: predictions from continuum elastic theory. Biophys. J. 122, 1868–1882 (2023).
Francia, V., Reker-Smit, C. & Salvati, A. Mechanisms of uptake and membrane curvature generation for the internalization of silica nanoparticles by cells. Nano Lett. 22, 3118–3124 (2022).
Epand, R. M., D’Souza, K., Berno, B. & Schlame, M. Membrane curvature modulation of protein activity determined by NMR. Biochim. Biophys. Acta 1848, 220–228 (2015).
Jarsch, I. K., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).
Has, C. & Das, S. L. Recent developments in membrane curvature sensing and induction by proteins. Biochim. Biophys. Acta 1865, 129971 (2021).
Muller, M. P. et al. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 119, 6086–6161 (2019).
Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release 164, 156–169 (2012).
Mashaghi, S., Jadidi, T., Koenderink, G. & Mashaghi, A. Lipid nanotechnology. Int. J. Mol. Sci. 14, 4242–4282 (2013).
Zhao, J. & Mao, S. Chapter three – Tuning the membrane fluidity of liposomes for desirable in vivo fate with enhanced drug delivery. Adv. Biomembr. Lipid Self-Assem. 34, 67–106 (2021).
Schaich, M., Sobota, D., Sleath, H., Cama, J. & Keyser, U. F. Characterization of lipid composition and diffusivity in OLA generated vesicles. Biochim.Biophys. Acta 1862, 183359 (2020).
Guo, L. et al. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. ChemPhysChem 9, 721–728 (2008).
Pincet, F. et al. Frap to characterize molecular diffusion and interaction in various membrane environments. PLoS ONE 11, e0158457 (2016).
Baccouch, R. et al. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochim. Biophys. Acta 1865, 184084 (2023).
Huang, Y.-Y., Chung, T.-W. & Wu, C.-I. Effect of saturated/unsaturated phosphatidylcholine ratio on the stability of liposome-encapsulated hemoglobin. Int. J. Pharm. 172, 161–167 (1998).
LaMastro, V., Campbell, K. M., Gonzalez, P., Meng-Saccoccio, T. & Shukla, A. Antifungal liposomes: Lipid saturation and cholesterol concentration impact interaction with fungal and mammalian cells. J. Biomed. Mater. Res A 111, 644–659 (2023).
Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666, 142–157 (2004).
Hashiba, K. et al. Impact of lipid tail length on the organ selectivity of mRNA-lipid nanoparticles. Nano Lett. 24, 12758–12767 (2024).
Gu, Y. & Reinhard, B. M. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. Nanoscale 16, 8533–8545 (2024).
Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys. 9, https://doi.org/10.3389/fphy.2021.644450 (2021).
Pabst, G. & Keller, S. Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem. Sci. 49, 333–345 (2024).
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).
Manno, S., Takakuwa, Y. & Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99, 1943–1948 (2002).
Gardea-Gutiérrez, D., Núñez-García, E., Oseguera-Guerra, B. E., Román-Aguirre, M. & Montes-Fonseca, S. L. Asymmetric lipid vesicles: techniques, applications, and future perspectives as an innovative drug delivery system. Pharmaceuticals 16, 777 (2023).
Yang, C. et al. Engineering asymmetric nanoscale vesicles for mRNA and protein delivery to cells. Adv. Funct. Mater. 35, 2505738 (2025).
Pautot, S., Frisken, B. J. & Weitz, D. A. Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. USA 100, 10718–10721 (2003).
van der Koog, L., Gandek, T. B. & Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 11, 2100639 (2022).
Hossein, A. & Deserno, M. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys. J. 118, 624–642 (2020).
Jahnke, K. et al. Polysaccharide functionalization reduces lipid vesicle stiffness. Proc. Natl. Acad. Sci. USA 121, e2317227121 (2024).
Riaz, M. K. et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int. J. Mol. Sci. 19, 195 (2018).
Khan, A. A., Allemailem, K. S., Almatroodi, S. A., Almatroudi, A. & Rahmani, A. H. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 10, 163 (2020).
Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).
Shi, Y. et al. Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharm. Sin. B 12, 1126–1147 (2022).
Lopes, D. et al. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil. Med. Res. 10, 19 (2023).
Liu, Y., Luo, J., Chen, X., Liu, W. & Chen, T. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett. 11, 100 (2019).
Wu, Y. et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. J. Nanobiotechnol. 20, 542 (2022).
Shao, M. et al. Exosome membrane-coated nanosystems: exploring biomedical applications in cancer diagnosis and therapy. Matter 6, 761–799 (2023).
Manno, M., Bongiovanni, A., Margolis, L., Bergese, P. & Arosio, P. The physico-chemical landscape of extracellular vesicles. Nat. Rev. Bioeng. 3, 68–82 (2025).
Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 10.1002/wnan.1450 (2017).
Zhang, A., Jung, K., Li, A., Liu, J. & Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 99, 101164 (2019).
Karimi, M. et al. pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 696–716 (2016).
Wells, C. M. et al. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater. 10, 34 (2019).
Zangabad, P. S. et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 7, 95–122 (2018).
Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).
Forgham, H., Liu, L., Davis, T. P. & Qiao, R. Antifouling surface coatings for the next generation of nanomedicine: toward in vivo immune evasion. Nanomedicine 18, 1997–2000 (2023).
Chen, B.-Q. et al. Immune-regulating camouflaged nanoplatforms: a promising strategy to improve cancer nano-immunotherapy. Bioact. Mater. 21, 1–19 (2023).
Waeterschoot, J., Gosselé, W., Lemež, p & Casadevall i Solvas, X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat. Commun. 15, 2504 (2024).
Huster, D., Maiti, S. & Herrmann, A. Phospholipid membranes as chemically and functionally tunable materials. Adv. Mater. 36, 2312898 (2024).
Ojansivu, M. et al. Formulation and characterization of novel ionizable and cationic lipid nanoparticles for the delivery of splice-switching oligonucleotides. Adv. Mater. 37, 2419538 (2025).
Liu, Z. et al. Engineered multi-domain lipid nanoparticles for targeted delivery. Chem. Soc. Rev. 54, 5961–5994 (2025).
Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).
Cárdenas, M., Campbell, R. A., Yanez Arteta, M., Lawrence, M. J. & Sebastiani, F. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Curr. Opin. Colloid Interface Sci. 66, 101705 (2023).
Koyra, N., Yu, H., Drummond, C. J., Zhai, J. & Dyett, B. Recent developments with pH-responsive lyotropic liquid crystalline lipid nanoparticles for targeted bioactive agent delivery. Expert Opin. Drug Deliv. 22, 1303–1324 (2025).
Li, S. et al. Polyphenol-mediated engineering of lipid nanoparticles with crystalline mesophases. Adv. Mater. e05830 (2025).
Yu, H., Dyett, B. P., Drummond, C. J. & Zhai, J. Ionizable lipid nanoparticles for mRNA delivery: internal self-assembled inverse mesophase structure and endosomal escape. Acc. Chem. Res. 58, 3210–3222 (2025).
Yap, S. L. et al. The internal nanostructure of lipid nanoparticles influences their diverse cellular uptake pathways. Small 21, 2500903 (2025).
Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl. Acad. Sci. USA 120, e2301067120 (2023).
Caselli, L., Conti, L., De Santis, I. & Berti, D. Small-angle x-ray and neutron scattering applied to lipid-based nanoparticles: recent advancements across different length scales. Adv. Colloid Interface Sci. 327, 103156 (2024).
Johansson, J. M. et al. Cellular and biophysical barriers to lipid nanoparticle mediated delivery of RNA to the cytosol. Nat. Commun. 16, 5354 (2025).
Li, Z. et al. Mechano-boosting nanomedicine antitumour efficacy by blocking the reticuloendothelial system with stiff nanogels. Nat. Commun. 14, 1437 (2023).
van Straten, D. et al. Biofluid specific protein coronas affect lipid nanoparticle behavior in vitro. J. Control. Release 373, 481–492 (2024).
Aliyandi, A., Reker-Smit, C., Bron, R., Zuhorn, I. S. & Salvati, A. Correlating corona composition and cell uptake to identify proteins affecting nanoparticle entry into endothelial cells. ACS Biomater. Sci. Eng. 7, 5573–5584 (2021).
Aliyandi, A., Zuhorn, I. S. & Salvati, A. Disentangling biomolecular corona interactions with cell receptors and implications for targeting of nanomedicines. Front. Bioeng. Biotechnol. 8, 599454 (2020).
Voke, E. et al. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. Nat. Commun. 16, 8699 (2025).
Choi, J., Bastatas, L., Lee, E., Mutiso, K. T. & Park, S. Mechanical characterization of multi-layered lipid nanoparticles using high-resolution AFM force spectroscopy. J. Ind. Eng. Chem. 113, 283–292 (2022).
Kolbow, J. D., Lindquist, N. C., Ertsgaard, C. T., Yoo, D. & Oh, S.-H. Nano-optical tweezers: methods and applications for trapping single molecules and nanoparticles. ChemPhysChem 22, 1409–1420 (2021).
Gibson, R. F. A review of recent research on nanoindentation of polymer composites and their constituents. Compos. Sci. Technol. 105, 51–65 (2014).
Yang, F. et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat. Methods 20, 1971–1979 (2023).
Darvish, A. et al. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing. Nanoscale 8, 14420–14431 (2016).
Amodeo, J. & Pizzagalli, L. Modeling the mechanical properties of nanoparticles: a review. Comptes Rendus. Phys. 22, 35–66 (2021).
Chen, Y. et al. Microfluidic deformability cytometry: a review. Talanta 251, 123815 (2023).
Morshed, A., Dutta, P. & Kim, M. J. Electrophoretic transport and dynamic deformation of bio-vesicles. Electrophoresis 40, 2584–2591 (2019).
