References
-
Dinglasan, J. L. N., Otani, H., Doering, D. T., Udwary, D. & Mouncey, N. J. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat. Rev. Microbiol. 23, 338–354 (2025).
-
Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).
-
Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015).
-
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
-
Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).
-
Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).
-
Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet 14, 125–138 (2013).
-
Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).
-
Collins, R. L. & Talkowski, M. E. Diversity and consequences of structural variation in the human genome. Nat. Rev. Genet. 26, 443–462 (2025).
-
Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).
-
Min, J. et al. Mechanisms of insertions at a DNA double-strand break. Mol. cell. 83, 2434–2448.e2437 (2023).
-
Lindahl, T. & Wood, R. Quality control by DNA repair. Science 286, 1897–1905 (1999).
-
Žgur-Bertok, D. DNA damage repair and bacterial pathogens. PLoS. Pathog. 9, e1003711 (2013).
-
Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).
-
Sage, E. & Shikazono, N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic. Biol. Med. 107, 125–135 (2017).
-
Zeng, W., Guo, L., Xu, S., Chen, J. & Zhou, J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38, 888–906 (2020).
-
Sun, C. et al. Genome mining of Streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster. Org. Lett. 21, 1453–1457 (2019).
-
Sarkar, S., Selvamurthy, W. & Gupta, M. M. Biological consequences of microwave stress: implications for mutagenesis and carcinogenesis. IETE Tech. Rev. 14, 153–163 (1997).
-
Casimiro, M. H., Ferreira, L. M., Leal, J. P., Pereira, C. C. L. & Monteiro, B. Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications. Membranes 9, 163 (2019).
-
Li, D., Shen, J., Ding, Q., Wu, J. & Chen, X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem. funct. 42, e3991 (2024).
-
Reineke, K. & Mathys, A. Endospore inactivation by emerging technologies: A review of target structures and inactivation mechanisms. Annu Rev. Food Sci. Technol. 11, 255–274 (2020).
-
Hu, H., Zhang, Q. & Ochi, K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184, 3984–3991 (2002).
-
Shin, C.-H. et al. Enhanced production of clavulanic acid by improving glycerol utilization using reporter-guided mutagenesis of an industrial Streptomyces clavuligerus strain. J. Ind. Microbiol. Biotechnol. 48, 3–4 (2021).
-
Mao, J. A lovastatin producing purple monascus W-4 and its application. CN113151005B, (2022).
-
Guo, L. Recombinant Escherichia coli and its application. CN111206008A, (2020).
-
Zhang, Y. et al. Role of DNA repair in Bacillus subtilis spore resistance to high energy and low energy electron beam treatments. Food Microbiol 87, 103353 (2020).
-
Bunting, S. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).
-
Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).
-
Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).
-
Pitcher, R. S., Brissett, N. C. & Doherty, A. J. Nonhomologous end-joining in bacteria: a microbial perspective. Annu. Rev. Microbiol. 61, 259–282 (2007).
-
Deng, L. et al. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc. Natl. Acad. Sci. Usa. 120, e2222045120 (2023).
-
Rubtsov, M. A. et al. Chromatin structure can strongly facilitate enhancer action over a distance. Proc. Natl. Acad. Sci. Usa. 103, 17690–17695 (2006).
-
Guijarro, J. et al. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 170, 1895–1901 (1988).
-
Chater, K. F. & Chandra, G. The evolution of development in Streptomyces analysed by genome comparisons. Fems. Microbiol. Rev. 30, 651–672 (2006).
-
Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).
-
Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).
-
Xu, F. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 15, 161–168 (2019).
-
Covington, B. C., Seyedsayamdost, M. R. & MetEx a metabolomics explorer application for natural product discovery. ACS Chem. Biol. 16, 2825–2833 (2021).
-
Zhang, R. et al. A two-stage metabolome refining pipeline for natural products discovery. Synth. Syst. Biotechnol. 10, 600–609 (2025).
-
Borgman, P., Lopez, R. D. & Lane, A. L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem. 17, 2305–2314 (2019).
-
Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).
-
Fernando, B. et al. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat. Prod. Rep. 41, 469–511 (2024).
-
Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).
-
Benjamin, M. S. & Joseph, J. L. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev. Biochem 90, 137–164 (2021).
-
Zhang, M. et al. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res. Microbiol. 164, 100–109 (2013).
-
Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Rhy. Chem. 66, 379–398 (2015).
-
Bury-Moné, S. et al. Dynamics of the streptomyces chromosome: chance and necessity. Trends Genet. 39, 873–887 (2023).
-
Rodríguez, H. et al. Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb. Cell. Fact. 12, 127 (2013).
-
Sinha, R. & Häder, D. UV-induced DNA damage and repair: a review. Photoch. Photobio. Sci. 1, 225–236 (2002).
-
Zhang, X. et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl. Microbiol. Biotechnol. 99, 5639–5646 (2015).
-
Dizdaroglu, M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett. 327, 26–47 (2012).
-
Yu, X. et al. A cyclic dipeptide from marine fungus penicillium chrysogenum DXY-1 exhibits anti-quorum sensing activity. ACS omega 6, 7693–7700 (2021).
-
Regazzoni, L. et al. Cyclo(His-Pro) exerts protective carbonyl quenching effects through its open histidine containing dipeptides. Nutrients 14, 1775 (2022).
-
Minelli, A. et al. Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defence. J. Cell. Mol. Med. 13, 1149–1161 (2009).
-
Motz, R. N. et al. Conjugation to native and nonnative triscatecholate siderophores enhances delivery and antibacterial activity of a β-Lactam to gram-negative bacterial pathogens. J. Am. Chem. Soc. 146, 7708–7722 (2024).
-
Wei, J., He, L. & Niu, G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth. Syst. Biotechnol. 3, 229–235 (2018).
-
Majtnerová, P. & Roušar, T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep. 45, 1469–1478 (2018).
-
Manfioletti, G. & Schneider, C. A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res. 16, 2873–2884 (1988).
-
Frédéric, G. et al. Determination of the 3D Genome Organization of Bacteria Using Hi-C. Methods Mol. Biol. 1837, 3–18 (2018).
-
Nelle, V., Ferhat, A., William Stafford, N. & Jean-Philippe, V. A statistical approach for inferring the 3D structure of the genome. Bioinformatics 30, i26–i33 (2014).
-
Nelle, V. et al. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Res. 43, 5331–5339 (2015).
