Enhancing microbial metabolic capacity through high-energy electron beam-induced intense structural variations

enhancing-microbial-metabolic-capacity-through-high-energy-electron-beam-induced-intense-structural-variations
Enhancing microbial metabolic capacity through high-energy electron beam-induced intense structural variations

References

  1. Dinglasan, J. L. N., Otani, H., Doering, D. T., Udwary, D. & Mouncey, N. J. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat. Rev. Microbiol. 23, 338–354 (2025).

  2. Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 3864 (2021).

    Google Scholar 

  3. Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015).

    Google Scholar 

  4. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Google Scholar 

  5. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Google Scholar 

  6. Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).

    Google Scholar 

  7. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet 14, 125–138 (2013).

    Google Scholar 

  8. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Google Scholar 

  9. Collins, R. L. & Talkowski, M. E. Diversity and consequences of structural variation in the human genome. Nat. Rev. Genet. 26, 443–462 (2025).

  10. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Google Scholar 

  11. Min, J. et al. Mechanisms of insertions at a DNA double-strand break. Mol. cell. 83, 2434–2448.e2437 (2023).

    Google Scholar 

  12. Lindahl, T. & Wood, R. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Google Scholar 

  13. Žgur-Bertok, D. DNA damage repair and bacterial pathogens. PLoS. Pathog. 9, e1003711 (2013).

    Google Scholar 

  14. Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).

    Google Scholar 

  15. Sage, E. & Shikazono, N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic. Biol. Med. 107, 125–135 (2017).

    Google Scholar 

  16. Zeng, W., Guo, L., Xu, S., Chen, J. & Zhou, J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38, 888–906 (2020).

    Google Scholar 

  17. Sun, C. et al. Genome mining of Streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster. Org. Lett. 21, 1453–1457 (2019).

    Google Scholar 

  18. Sarkar, S., Selvamurthy, W. & Gupta, M. M. Biological consequences of microwave stress: implications for mutagenesis and carcinogenesis. IETE Tech. Rev. 14, 153–163 (1997).

    Google Scholar 

  19. Casimiro, M. H., Ferreira, L. M., Leal, J. P., Pereira, C. C. L. & Monteiro, B. Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications. Membranes 9, 163 (2019).

    Google Scholar 

  20. Li, D., Shen, J., Ding, Q., Wu, J. & Chen, X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem. funct. 42, e3991 (2024).

    Google Scholar 

  21. Reineke, K. & Mathys, A. Endospore inactivation by emerging technologies: A review of target structures and inactivation mechanisms. Annu Rev. Food Sci. Technol. 11, 255–274 (2020).

    Google Scholar 

  22. Hu, H., Zhang, Q. & Ochi, K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184, 3984–3991 (2002).

    Google Scholar 

  23. Shin, C.-H. et al. Enhanced production of clavulanic acid by improving glycerol utilization using reporter-guided mutagenesis of an industrial Streptomyces clavuligerus strain. J. Ind. Microbiol. Biotechnol. 48, 3–4 (2021).

    Google Scholar 

  24. Mao, J. A lovastatin producing purple monascus W-4 and its application. CN113151005B, (2022).

  25. Guo, L. Recombinant Escherichia coli and its application. CN111206008A, (2020).

  26. Zhang, Y. et al. Role of DNA repair in Bacillus subtilis spore resistance to high energy and low energy electron beam treatments. Food Microbiol 87, 103353 (2020).

    Google Scholar 

  27. Bunting, S. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Google Scholar 

  28. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Google Scholar 

  29. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Google Scholar 

  30. Pitcher, R. S., Brissett, N. C. & Doherty, A. J. Nonhomologous end-joining in bacteria: a microbial perspective. Annu. Rev. Microbiol. 61, 259–282 (2007).

    Google Scholar 

  31. Deng, L. et al. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc. Natl. Acad. Sci. Usa. 120, e2222045120 (2023).

    Google Scholar 

  32. Rubtsov, M. A. et al. Chromatin structure can strongly facilitate enhancer action over a distance. Proc. Natl. Acad. Sci. Usa. 103, 17690–17695 (2006).

    Google Scholar 

  33. Guijarro, J. et al. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 170, 1895–1901 (1988).

    Google Scholar 

  34. Chater, K. F. & Chandra, G. The evolution of development in Streptomyces analysed by genome comparisons. Fems. Microbiol. Rev. 30, 651–672 (2006).

    Google Scholar 

  35. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    Google Scholar 

  36. Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).

    Google Scholar 

  37. Xu, F. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 15, 161–168 (2019).

    Google Scholar 

  38. Covington, B. C., Seyedsayamdost, M. R. & MetEx a metabolomics explorer application for natural product discovery. ACS Chem. Biol. 16, 2825–2833 (2021).

    Google Scholar 

  39. Zhang, R. et al. A two-stage metabolome refining pipeline for natural products discovery. Synth. Syst. Biotechnol. 10, 600–609 (2025).

    Google Scholar 

  40. Borgman, P., Lopez, R. D. & Lane, A. L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem. 17, 2305–2314 (2019).

    Google Scholar 

  41. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).

    Google Scholar 

  42. Fernando, B. et al. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat. Prod. Rep. 41, 469–511 (2024).

    Google Scholar 

  43. Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    Google Scholar 

  44. Benjamin, M. S. & Joseph, J. L. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev. Biochem 90, 137–164 (2021).

    Google Scholar 

  45. Zhang, M. et al. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res. Microbiol. 164, 100–109 (2013).

    Google Scholar 

  46. Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Rhy. Chem. 66, 379–398 (2015).

    Google Scholar 

  47. Bury-Moné, S. et al. Dynamics of the streptomyces chromosome: chance and necessity. Trends Genet. 39, 873–887 (2023).

    Google Scholar 

  48. Rodríguez, H. et al. Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb. Cell. Fact. 12, 127 (2013).

    Google Scholar 

  49. Sinha, R. & Häder, D. UV-induced DNA damage and repair: a review. Photoch. Photobio. Sci. 1, 225–236 (2002).

    Google Scholar 

  50. Zhang, X. et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl. Microbiol. Biotechnol. 99, 5639–5646 (2015).

    Google Scholar 

  51. Dizdaroglu, M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett. 327, 26–47 (2012).

    Google Scholar 

  52. Yu, X. et al. A cyclic dipeptide from marine fungus penicillium chrysogenum DXY-1 exhibits anti-quorum sensing activity. ACS omega 6, 7693–7700 (2021).

    Google Scholar 

  53. Regazzoni, L. et al. Cyclo(His-Pro) exerts protective carbonyl quenching effects through its open histidine containing dipeptides. Nutrients 14, 1775 (2022).

    Google Scholar 

  54. Minelli, A. et al. Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defence. J. Cell. Mol. Med. 13, 1149–1161 (2009).

    Google Scholar 

  55. Motz, R. N. et al. Conjugation to native and nonnative triscatecholate siderophores enhances delivery and antibacterial activity of a β-Lactam to gram-negative bacterial pathogens. J. Am. Chem. Soc. 146, 7708–7722 (2024).

    Google Scholar 

  56. Wei, J., He, L. & Niu, G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth. Syst. Biotechnol. 3, 229–235 (2018).

    Google Scholar 

  57. Majtnerová, P. & Roušar, T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep. 45, 1469–1478 (2018).

    Google Scholar 

  58. Manfioletti, G. & Schneider, C. A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res. 16, 2873–2884 (1988).

    Google Scholar 

  59. Frédéric, G. et al. Determination of the 3D Genome Organization of Bacteria Using Hi-C. Methods Mol. Biol. 1837, 3–18 (2018).

    Google Scholar 

  60. Nelle, V., Ferhat, A., William Stafford, N. & Jean-Philippe, V. A statistical approach for inferring the 3D structure of the genome. Bioinformatics 30, i26–i33 (2014).

    Google Scholar 

  61. Nelle, V. et al. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Res. 43, 5331–5339 (2015).

    Google Scholar 

Download references