Enhancing ozonation using Meretrix lusoria shell waste biomass: sustainable decontamination of azo dye wastewater via decolorization, mineralization, and detoxification

enhancing-ozonation-using-meretrix-lusoria-shell-waste-biomass:-sustainable-decontamination-of-azo-dye-wastewater-via-decolorization,-mineralization,-and-detoxification
Enhancing ozonation using Meretrix lusoria shell waste biomass: sustainable decontamination of azo dye wastewater via decolorization, mineralization, and detoxification

References

  1. Chaturvedi, A., Rai, B. N., Singh, R. S. & Jaiswal, R. P. A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. Rev. Chem. Eng. 38, 617–639 (2022).

    Google Scholar 

  2. Keshta, B. E. et al. Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes. npj Clean Water 8, https://doi.org/10.1038/s41545-024-00413-7 (2025).

  3. Sen, S. K., Raut, S., Bandyopadhyay, P. & Raut, S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 30, 112–133 (2016).

    Google Scholar 

  4. Shu, D. et al. Enhanced degradation and recycling of reactive dye wastewater using cobalt loaded MXene catalysts. npj Clean Water 7, https://doi.org/10.1038/s41545-024-00391-w (2024).

  5. Selvaraj, V., Swarna Karthika, T., Mansiya, C. & Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 1224, 129195 (2021).

    Google Scholar 

  6. Dias, N. C., Alves, T. L. M., Azevedo, D. A., Bassin, J. P. & Dezotti, M. Metabolization of by-products formed by ozonation of the azo dye Reactive Red 239 in moving-bed biofilm reactors in series. Braz. J. Chem. Eng. 37, 495–504 (2020).

    Google Scholar 

  7. Muniyasamy, A. et al. Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process – Ozonation: Experimental & partial derivative modelling approach. J. Environ. Manag. 265, 110397 (2020).

    Google Scholar 

  8. Detjob, A., Boonnorat, J. & Phattarapattamawong, S. Synergistic decolorization and detoxication of reactive dye Navy Blue 250 (NB250) and dye wastewater by the UV/Chlorine process. Environ. Eng. Res. 28, 220221–220220 (2022).

    Google Scholar 

  9. Solayman, H. M. et al. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 11, 109610 (2023).

    Google Scholar 

  10. Lee, Y.-J., Lee, C.-G., Park, S.-J., Moon, J.-K. & Alvarez, P. J. J. pH-dependent contribution of chlorine monoxide radicals and byproducts formation during UV/chlorine treatment on clothianidin. Chem. Eng. J. 428, 132444 (2022).

    Google Scholar 

  11. Yang, H. et al. UV photoreduction-driven heterogeneous fenton-like process: Long-term reactivation of fenton sludge-derived biochar and enhanced acetaminophen degradation. J. Water Process Eng. 68, 106411 (2024).

    Google Scholar 

  12. Yin, B., Li, C., Tian, Z., Chen, R. & Zhao, Y. Effective catalytic ozonation of Orange G by supported Ce–Fe-Co oxides on Al2O3: Performance, mechanism and selective oxidation. J. Water Process Eng. 69, 106752 (2025).

    Google Scholar 

  13. Turhan, K. & Ozturkcan, S. A. Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-batch Bubble Column Reactor. Water, Air, & Soil Pollution 224, https://doi.org/10.1007/s11270-012-1353-8 (2012).

  14. de Souza, S. M., Bonilla, K. A. & de Souza, A. A. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard Mater. 179, 35–42 (2010).

    Google Scholar 

  15. Li, X., Chen, W., Ma, L., Huang, Y. & Wang, H. Characteristics and mechanisms of catalytic ozonation with Fe-shaving-based catalyst in industrial wastewater advanced treatment. J. Clean. Prod. 222, 174–181 (2019).

    Google Scholar 

  16. Wu, G., Qin, W., Sun, L., Yuan, X. & Xia, D. Role of peroxymonosulfate on enhancing ozonation for micropollutant degradation: Performance evaluation, mechanism insight and kinetics study. Chem. Eng. J. 360, 115–123 (2019).

    Google Scholar 

  17. Yang, S., Song, Y., Chang, F. & Wang, K. Evaluation of chemistry and key reactor parameters for industrial water treatment applications of the UV/O(3) process. Environ. Res 188, 109660 (2020).

    Google Scholar 

  18. Chen, W. et al. A comprehensive review on metal based active sites and their interaction with O(3) during heterogeneous catalytic ozonation process: Types, regulation and authentication. J. Hazard Mater. 443, 130302 (2023).

    Google Scholar 

  19. Ikhlaq, A. et al. Catalytic ozonation for the removal of methyl orange in water using iron-coated Moringa oleifera seeds husk. Process Saf. Environ. Prot. 199, 107248 (2025).

    Google Scholar 

  20. Niu, J., Yuan, R., Chen, H., Zhou, B. & Luo, S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. Environ. Res 262, 119889 (2024).

    Google Scholar 

  21. Xiong, W. et al. Ozonation catalyzed by iron- and/or manganese-supported granular activated carbons for the treatment of phenol. Environ. Sci. Pollut. Res Int 26, 21022–21033 (2019).

    Google Scholar 

  22. Khan, M. D., Chottitisupawong, T., Vu, H. H. T., Ahn, J. W. & Kim, G. M. Removal of Phosphorus from an Aqueous Solution by Nanocalcium Hydroxide Derived from Waste Bivalve Seashells: Mechanism and Kinetics. ACS Omega 5, 12290–12301 (2020).

    Google Scholar 

  23. Choi, S. H. et al. Toward transformation of bivalve shell wastes into high value-added and sustainable products in South Korea: A review. J. Ind. Eng. Chem. 129, 38–52 (2024).

    Google Scholar 

  24. Zhan, J., Lu, J. & Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 14, 477–488 (2021).

    Google Scholar 

  25. He, C. et al. Preparation of Micro-Nano Material Composed of Oyster Shell/Fe(3)O(4) Nanoparticles/Humic Acid and Its Application in Selective Removal of Hg(II). Nanomaterials (Basel) 9, https://doi.org/10.3390/nano9070953 (2019).

  26. Yen, H. Y. & Li, J. Y. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J. Environ. Manag. 161, 344–349 (2015).

    Google Scholar 

  27. Quan, X. et al. Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor. J. Environ. Chem. Eng. 5, 283–291 (2017).

    Google Scholar 

  28. Zhang, C. et al. Feasibility of intimately coupled CaO-catalytic-ozonation and bio-contact oxidation reactor for heavy metal and color removal and deep mineralization of refractory organics in actual coking wastewater. Bioresour. Technol. 408, 131154 (2024).

    Google Scholar 

  29. Liu, J., Liu, A., Li, J., Liu, S. & Zhang, W. -x Probing the performance and mechanisms of Congo red wastewater decolorization with nanoscale zero-valent iron in the continuing flow reactor. J. Clean. Prod. 346, 131201 (2022).

    Google Scholar 

  30. Rezvani, B., Nabavi, S. R. & Ghani, M. Magnetic nanohybrid derived from MIL-53(Fe) as an efficient catalyst for catalytic ozonation of cefixime and process optimization by optimal design. Process Saf. Environ. Prot. 177, 1054–1071 (2023).

    Google Scholar 

  31. Li, K. et al. Effect of pH on degradation and mineralization of catechol in calcium-aid ozonation: Performance, mechanism and products analysis. Sep. Purif. Technol. 349, 127839 (2024).

    Google Scholar 

  32. Shah, S. A. A., Gkoulemani, N., Irvine, J. T. S., Sajjad, M. T. & Baker, R. T. Synthesis of high surface area mesoporous ZnAl2O4 with excellent photocatalytic activity for the photodegradation of Congo Red dye. J. Catal. 439, 115769 (2024).

    Google Scholar 

  33. Hernandez-Zamora, M. & Martinez-Jeronimo, F. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environ. Sci. Pollut. Res Int 26, 11743–11755 (2019).

    Google Scholar 

  34. Pious, A. et al. Micelle assisted synthesis of bismuth oxide nanoparticles for improved chemocatalytic degradation of toxic Congo red into non-toxic products. N. J. Chem. 48, 96–104 (2024).

    Google Scholar 

  35. Janković, B., Manić, N., Jović, M. & Smičiklas, I. Kinetic and thermodynamic analysis of thermo-oxidative degradation of seashell powders with different particle size fractions: compensation effect and iso-equilibrium phenomena. J. Therm. Anal. Calorim. 147, 2305–2334 (2021).

    Google Scholar 

  36. Suwannasingha, N. et al. Effect of calcination temperature on structure and characteristics of calcium oxide powder derived from marine shell waste. J. Saudi Chem. Soc. 26, 101441 (2022).

    Google Scholar 

  37. Wu, F. et al. Increasing flexural strength of CO2 cured cement paste by CaCO3 polymorph control. Cem. Concr. Compos. 141, 105128 (2023).

    Google Scholar 

  38. Bai, H., Liu, X., Bao, F. & Zhao, Z. Synthesis of micronized CaO assisted by NH4HCO3 with Ca(OH)2 and its application in heterogeneously catalyzing transesterification reaction for producing biodiesel. J. Chin. Chem. Soc. 66, 1604–1609 (2019).

    Google Scholar 

  39. Choi, M.-Y., Lee, C.-G. & Park, S.-J. Conversion of Organic Waste to Novel Adsorbent for Fluoride Removal: Efficacy and Mechanism of Fluoride Adsorption by Calcined Venerupis philippinarum Shells. Water, Air, & Soil Pollution 233, https://doi.org/10.1007/s11270-022-05757-9 (2022).

  40. Jang, S.-H. et al. Green utilization of Meretrix lusoria shell for phosphorus removal, pathogenic bacteria inactivation, and phosphorus supply for crop growth. J. Water Process Eng. 76, 108271 (2025).

    Google Scholar 

  41. Lee, Y.-J. et al. The inhibitory mechanism of humic acids on photocatalytic generation of reactive oxygen species by TiO2 depends on the crystalline phase. Chem. Eng. J. 476, 146785 (2023).

    Google Scholar 

  42. Tizaoui, C., Grima, N. M. & Derdar, M. Z. Effect of the radical scavenger t-butanol on gas–liquid mass transfer. Chem. Eng. Sci. 64, 4375–4382 (2009).

    Google Scholar 

  43. Wang, Y., Duan, X., Xie, Y., Sun, H. & Wang, S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal. 10, 13383–13414 (2020).

    Google Scholar 

  44. Lee, Y. J., Jung, S. H. & Lee, C. G. Oxidation of urea to nitrate via persulfate activation under far-UVC light improves ultrapure water production. J. Hazard Mater. 498, 139987 (2025).

    Google Scholar 

  45. Sun, F. et al. A quantitative analysis of hydroxyl radical generation as H2O2 encounters siderite: Kinetics and effect of parameters. Appl. Geochem. 126, 104893 (2021).

    Google Scholar 

  46. Yang, W., Vogler, B., Lei, Y. & Wu, T. Metallic ion leaching from heterogeneous catalysts: an overlooked effect in the study of catalytic ozonation processes. Environ. Sci.: Water Res. Technol. 3, 1143–1151 (2017).

    Google Scholar 

  47. Mustafa, F. S. & Oladipo, A. A. Rapid degradation of anionic azo dye from water using visible light-enabled binary metal-organic framework. J. Water Process Eng. 64, 105686 (2024).

    Google Scholar 

  48. Zhang, C. et al. A critical review of the aniline transformation fate in azo dye wastewater treatment. J. Clean. Prod. 321, 128971 (2021).

    Google Scholar 

  49. Zhao, C. et al. Influence of multivalent background ions competition adsorption on the adsorption behavior of azo dye molecules and removal mechanism: Based on machine learning, DFT and experiments. Sep. Purif. Technol. 341, 126810 (2024).

    Google Scholar 

  50. Keshavarz, M. H., Shirazi, Z., Jafari, M. & Jorfi Shanani, S. M. Predicting aqueous-phase hydroxyl radical reaction kinetics with organic compounds in water, atmosphere, and biological systems. Process Saf. Environ. Prot. 196, 106876 (2025).

    Google Scholar 

  51. Wang, Y., Rodriguez, E. M., Rentsch, D., Qiang, Z. & von Gunten, U. Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms. Environ. Sci. Technol. 59, 4733–4744 (2025).

    Google Scholar 

  52. Du, Z., Yang, E.-H. & Unluer, C. Investigation of the properties of Mg(OH)2 extracted from magnesium-rich brine via the use of an industrial by-product. Cem. Concr. Compos. 152, 105658 (2024).

    Google Scholar 

  53. Zhang, T., Yang, P., Ji, Y. & Lu, J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. Environ. Sci. Technol. 59, 3325–3335 (2025).

    Google Scholar 

  54. Zeng, Z.-J. et al. Molecular weight fraction-specific transformation of natural organic matter during hydroxyl radical and sulfate radical oxidation. Chem. Eng. J. 498, 155397 (2024).

    Google Scholar 

  55. Zhang, S., Jiang, J.-Q. & Petri, M. Preliminarily comparative performance of removing bisphenol-S by ferrate oxidation and ozonation. npj Clean Water 4, https://doi.org/10.1038/s41545-020-00095-x (2021).

  56. Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E. & Cinar, O. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresour. Technol. 146, 135–143 (2013).

    Google Scholar 

  57. R Ananthashankar, A. E. G. Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology 05, https://doi.org/10.4172/2157-7048.1000182 (2013).

  58. Jamee, R. & Siddique, R. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microbiol Immunol. (Bp) 9, 114–118 (2019).

    Google Scholar 

  59. de Oliveira, D. M. et al. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV(254)), UV(254)/H(2)O(2), Fenton, and photo-Fenton processes. Environ. Sci. Pollut. Res Int 26, 4348–4366 (2019).

    Google Scholar 

Download references