References
-
Chaturvedi, A., Rai, B. N., Singh, R. S. & Jaiswal, R. P. A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. Rev. Chem. Eng. 38, 617–639 (2022).
-
Keshta, B. E. et al. Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes. npj Clean Water 8, https://doi.org/10.1038/s41545-024-00413-7 (2025).
-
Sen, S. K., Raut, S., Bandyopadhyay, P. & Raut, S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 30, 112–133 (2016).
-
Shu, D. et al. Enhanced degradation and recycling of reactive dye wastewater using cobalt loaded MXene catalysts. npj Clean Water 7, https://doi.org/10.1038/s41545-024-00391-w (2024).
-
Selvaraj, V., Swarna Karthika, T., Mansiya, C. & Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 1224, 129195 (2021).
-
Dias, N. C., Alves, T. L. M., Azevedo, D. A., Bassin, J. P. & Dezotti, M. Metabolization of by-products formed by ozonation of the azo dye Reactive Red 239 in moving-bed biofilm reactors in series. Braz. J. Chem. Eng. 37, 495–504 (2020).
-
Muniyasamy, A. et al. Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process – Ozonation: Experimental & partial derivative modelling approach. J. Environ. Manag. 265, 110397 (2020).
-
Detjob, A., Boonnorat, J. & Phattarapattamawong, S. Synergistic decolorization and detoxication of reactive dye Navy Blue 250 (NB250) and dye wastewater by the UV/Chlorine process. Environ. Eng. Res. 28, 220221–220220 (2022).
-
Solayman, H. M. et al. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 11, 109610 (2023).
-
Lee, Y.-J., Lee, C.-G., Park, S.-J., Moon, J.-K. & Alvarez, P. J. J. pH-dependent contribution of chlorine monoxide radicals and byproducts formation during UV/chlorine treatment on clothianidin. Chem. Eng. J. 428, 132444 (2022).
-
Yang, H. et al. UV photoreduction-driven heterogeneous fenton-like process: Long-term reactivation of fenton sludge-derived biochar and enhanced acetaminophen degradation. J. Water Process Eng. 68, 106411 (2024).
-
Yin, B., Li, C., Tian, Z., Chen, R. & Zhao, Y. Effective catalytic ozonation of Orange G by supported Ce–Fe-Co oxides on Al2O3: Performance, mechanism and selective oxidation. J. Water Process Eng. 69, 106752 (2025).
-
Turhan, K. & Ozturkcan, S. A. Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-batch Bubble Column Reactor. Water, Air, & Soil Pollution 224, https://doi.org/10.1007/s11270-012-1353-8 (2012).
-
de Souza, S. M., Bonilla, K. A. & de Souza, A. A. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard Mater. 179, 35–42 (2010).
-
Li, X., Chen, W., Ma, L., Huang, Y. & Wang, H. Characteristics and mechanisms of catalytic ozonation with Fe-shaving-based catalyst in industrial wastewater advanced treatment. J. Clean. Prod. 222, 174–181 (2019).
-
Wu, G., Qin, W., Sun, L., Yuan, X. & Xia, D. Role of peroxymonosulfate on enhancing ozonation for micropollutant degradation: Performance evaluation, mechanism insight and kinetics study. Chem. Eng. J. 360, 115–123 (2019).
-
Yang, S., Song, Y., Chang, F. & Wang, K. Evaluation of chemistry and key reactor parameters for industrial water treatment applications of the UV/O(3) process. Environ. Res 188, 109660 (2020).
-
Chen, W. et al. A comprehensive review on metal based active sites and their interaction with O(3) during heterogeneous catalytic ozonation process: Types, regulation and authentication. J. Hazard Mater. 443, 130302 (2023).
-
Ikhlaq, A. et al. Catalytic ozonation for the removal of methyl orange in water using iron-coated Moringa oleifera seeds husk. Process Saf. Environ. Prot. 199, 107248 (2025).
-
Niu, J., Yuan, R., Chen, H., Zhou, B. & Luo, S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. Environ. Res 262, 119889 (2024).
-
Xiong, W. et al. Ozonation catalyzed by iron- and/or manganese-supported granular activated carbons for the treatment of phenol. Environ. Sci. Pollut. Res Int 26, 21022–21033 (2019).
-
Khan, M. D., Chottitisupawong, T., Vu, H. H. T., Ahn, J. W. & Kim, G. M. Removal of Phosphorus from an Aqueous Solution by Nanocalcium Hydroxide Derived from Waste Bivalve Seashells: Mechanism and Kinetics. ACS Omega 5, 12290–12301 (2020).
-
Choi, S. H. et al. Toward transformation of bivalve shell wastes into high value-added and sustainable products in South Korea: A review. J. Ind. Eng. Chem. 129, 38–52 (2024).
-
Zhan, J., Lu, J. & Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 14, 477–488 (2021).
-
He, C. et al. Preparation of Micro-Nano Material Composed of Oyster Shell/Fe(3)O(4) Nanoparticles/Humic Acid and Its Application in Selective Removal of Hg(II). Nanomaterials (Basel) 9, https://doi.org/10.3390/nano9070953 (2019).
-
Yen, H. Y. & Li, J. Y. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J. Environ. Manag. 161, 344–349 (2015).
-
Quan, X. et al. Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor. J. Environ. Chem. Eng. 5, 283–291 (2017).
-
Zhang, C. et al. Feasibility of intimately coupled CaO-catalytic-ozonation and bio-contact oxidation reactor for heavy metal and color removal and deep mineralization of refractory organics in actual coking wastewater. Bioresour. Technol. 408, 131154 (2024).
-
Liu, J., Liu, A., Li, J., Liu, S. & Zhang, W. -x Probing the performance and mechanisms of Congo red wastewater decolorization with nanoscale zero-valent iron in the continuing flow reactor. J. Clean. Prod. 346, 131201 (2022).
-
Rezvani, B., Nabavi, S. R. & Ghani, M. Magnetic nanohybrid derived from MIL-53(Fe) as an efficient catalyst for catalytic ozonation of cefixime and process optimization by optimal design. Process Saf. Environ. Prot. 177, 1054–1071 (2023).
-
Li, K. et al. Effect of pH on degradation and mineralization of catechol in calcium-aid ozonation: Performance, mechanism and products analysis. Sep. Purif. Technol. 349, 127839 (2024).
-
Shah, S. A. A., Gkoulemani, N., Irvine, J. T. S., Sajjad, M. T. & Baker, R. T. Synthesis of high surface area mesoporous ZnAl2O4 with excellent photocatalytic activity for the photodegradation of Congo Red dye. J. Catal. 439, 115769 (2024).
-
Hernandez-Zamora, M. & Martinez-Jeronimo, F. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environ. Sci. Pollut. Res Int 26, 11743–11755 (2019).
-
Pious, A. et al. Micelle assisted synthesis of bismuth oxide nanoparticles for improved chemocatalytic degradation of toxic Congo red into non-toxic products. N. J. Chem. 48, 96–104 (2024).
-
Janković, B., Manić, N., Jović, M. & Smičiklas, I. Kinetic and thermodynamic analysis of thermo-oxidative degradation of seashell powders with different particle size fractions: compensation effect and iso-equilibrium phenomena. J. Therm. Anal. Calorim. 147, 2305–2334 (2021).
-
Suwannasingha, N. et al. Effect of calcination temperature on structure and characteristics of calcium oxide powder derived from marine shell waste. J. Saudi Chem. Soc. 26, 101441 (2022).
-
Wu, F. et al. Increasing flexural strength of CO2 cured cement paste by CaCO3 polymorph control. Cem. Concr. Compos. 141, 105128 (2023).
-
Bai, H., Liu, X., Bao, F. & Zhao, Z. Synthesis of micronized CaO assisted by NH4HCO3 with Ca(OH)2 and its application in heterogeneously catalyzing transesterification reaction for producing biodiesel. J. Chin. Chem. Soc. 66, 1604–1609 (2019).
-
Choi, M.-Y., Lee, C.-G. & Park, S.-J. Conversion of Organic Waste to Novel Adsorbent for Fluoride Removal: Efficacy and Mechanism of Fluoride Adsorption by Calcined Venerupis philippinarum Shells. Water, Air, & Soil Pollution 233, https://doi.org/10.1007/s11270-022-05757-9 (2022).
-
Jang, S.-H. et al. Green utilization of Meretrix lusoria shell for phosphorus removal, pathogenic bacteria inactivation, and phosphorus supply for crop growth. J. Water Process Eng. 76, 108271 (2025).
-
Lee, Y.-J. et al. The inhibitory mechanism of humic acids on photocatalytic generation of reactive oxygen species by TiO2 depends on the crystalline phase. Chem. Eng. J. 476, 146785 (2023).
-
Tizaoui, C., Grima, N. M. & Derdar, M. Z. Effect of the radical scavenger t-butanol on gas–liquid mass transfer. Chem. Eng. Sci. 64, 4375–4382 (2009).
-
Wang, Y., Duan, X., Xie, Y., Sun, H. & Wang, S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal. 10, 13383–13414 (2020).
-
Lee, Y. J., Jung, S. H. & Lee, C. G. Oxidation of urea to nitrate via persulfate activation under far-UVC light improves ultrapure water production. J. Hazard Mater. 498, 139987 (2025).
-
Sun, F. et al. A quantitative analysis of hydroxyl radical generation as H2O2 encounters siderite: Kinetics and effect of parameters. Appl. Geochem. 126, 104893 (2021).
-
Yang, W., Vogler, B., Lei, Y. & Wu, T. Metallic ion leaching from heterogeneous catalysts: an overlooked effect in the study of catalytic ozonation processes. Environ. Sci.: Water Res. Technol. 3, 1143–1151 (2017).
-
Mustafa, F. S. & Oladipo, A. A. Rapid degradation of anionic azo dye from water using visible light-enabled binary metal-organic framework. J. Water Process Eng. 64, 105686 (2024).
-
Zhang, C. et al. A critical review of the aniline transformation fate in azo dye wastewater treatment. J. Clean. Prod. 321, 128971 (2021).
-
Zhao, C. et al. Influence of multivalent background ions competition adsorption on the adsorption behavior of azo dye molecules and removal mechanism: Based on machine learning, DFT and experiments. Sep. Purif. Technol. 341, 126810 (2024).
-
Keshavarz, M. H., Shirazi, Z., Jafari, M. & Jorfi Shanani, S. M. Predicting aqueous-phase hydroxyl radical reaction kinetics with organic compounds in water, atmosphere, and biological systems. Process Saf. Environ. Prot. 196, 106876 (2025).
-
Wang, Y., Rodriguez, E. M., Rentsch, D., Qiang, Z. & von Gunten, U. Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms. Environ. Sci. Technol. 59, 4733–4744 (2025).
-
Du, Z., Yang, E.-H. & Unluer, C. Investigation of the properties of Mg(OH)2 extracted from magnesium-rich brine via the use of an industrial by-product. Cem. Concr. Compos. 152, 105658 (2024).
-
Zhang, T., Yang, P., Ji, Y. & Lu, J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. Environ. Sci. Technol. 59, 3325–3335 (2025).
-
Zeng, Z.-J. et al. Molecular weight fraction-specific transformation of natural organic matter during hydroxyl radical and sulfate radical oxidation. Chem. Eng. J. 498, 155397 (2024).
-
Zhang, S., Jiang, J.-Q. & Petri, M. Preliminarily comparative performance of removing bisphenol-S by ferrate oxidation and ozonation. npj Clean Water 4, https://doi.org/10.1038/s41545-020-00095-x (2021).
-
Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E. & Cinar, O. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresour. Technol. 146, 135–143 (2013).
-
R Ananthashankar, A. E. G. Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology 05, https://doi.org/10.4172/2157-7048.1000182 (2013).
-
Jamee, R. & Siddique, R. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microbiol Immunol. (Bp) 9, 114–118 (2019).
-
de Oliveira, D. M. et al. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV(254)), UV(254)/H(2)O(2), Fenton, and photo-Fenton processes. Environ. Sci. Pollut. Res Int 26, 4348–4366 (2019).
