References
-
John, J. E. et al. Biomining sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. Front. Microbiol. 14, (2023).
-
El Sabagh, A. et al. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. 503–533. https://doi.org/10.1007/978-3-030-49732-3_20 (Springer, 2020).
-
Kumar, P. & Sharma, P. K. Soil salinity and food security in India. Front. Sustain. Food Syst. 4, (2020).
-
Balasubramaniam, T., Shen, G., Esmaeili, N. & Zhang, H. Plants’ response mechanisms to salinity stress. Plants 12, 2253 (2023).
-
Shahid, M. A. et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10, 938 (2020).
-
Isayenkov, S. V. & Maathuis, F. J. M. Plant salinity stress: many unanswered questions remain. Front. Plant. Sci. 10, (2019).
-
Kapadia, C. et al. Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Front. Plant. Sci. 13, (2022).
-
Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 33, 119–124 (2015).
-
Vreeland, R. H., Mcdonnough, S., Meyers, S. S. & Piselli, A. F. Jr Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2, 321–331 (1998).
-
Oren, A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002).
-
Bolhuis, H. et al. The genome of the square archaeon haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7, (2006).
-
Kim, K. K., Lee, J. S. & Stevens, D. A. Microbiology and epidemiology of Halomonas species. Future Microbiol. 8, 1559–1573 (2013).
-
Sharma, A. et al. Halophilic bacteria: potential bioinoculants for sustainable agriculture and environment management under salt stress. 297–325. https://doi.org/10.1007/978-981-10-2854-0_14 (Springer, 2016).
-
León, M. J. et al. Compatible solute synthesis and import by the moderate halophile spiribacter salinus: physiology and genomics. Front. Microbiol. 9, (2018).
-
Viver, T. et al. Genomic comparison between members of the salinibacteraceae family, and description of a new species of salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Syst. Appl. Microbiol. 41, 198–212 (2018).
-
Cui, H. L. & Dyall-Smith, M. L. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. Mar. Life Sci. Technol. 3, 243–251 (2021).
-
Ali, I., Khaliq, S., Akbar, A. & Sajid, S. Biotechnological applications of halophilic fungi: past, present, and future. 291–306. https://doi.org/10.1007/978-3-030-19030-9_15 (Springer, 2019).
-
Gunde-Cimerman, N. & Plemenitaš, A. Ecology and molecular adaptations of the halophilic black yeast hortaea werneckii. Reviews Environ. Sci. Bio/Technology. 5, 323–331 (2006).
-
Castillo-Carvajal, L. C., Barragán-Huerta, B. E. & Sanz-Martín, J. L. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ. Sci. Pollut. Res. 21, 9578–9588 (2014).
-
Adamiak, J., Otlewska, A. & Gutarowska, B. Halophilic microbial communities in deteriorated buildings. World J. Microbiol. Biotechnol. 31, 1489–1499 (2015).
-
Haque, M. M. et al. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Sci. Rep. 12, (2022).
-
Paul, D. & Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron. Sustain. Dev. 34, 737–752 (2014).
-
Orhan, F. & Demirci, A. Salt stress mitigating potential of Halotolerant/Halophilic plant growth promoting. Geomicrobiol J. 37, 663–669 (2020).
-
Singh, R. P. & Jha, P. N. Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL- 12 isolated from a salt lake. Symbiosis 69, 101–111 (2016).
-
Sanchez-Porro, C., Mellado, E., Martin, S. & Ventosa, A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94, 295–300 (2003).
-
Etesami, H. & Alikhani, H. A. Halotolerant plant growth-promoting fungi and bacteria as an alternative strategy for improving nutrient availability to salinity-stressed crop plants. 103–146. https://doi.org/10.1007/978-981-13-8335-9_5 (Springer, 2019).
-
Saghafi, D., Lajayer, B. A., Ghorbanpour, M. & Delangiz, N. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech 9, (2019).
-
Zhang, M. et al. Nitrogen recovery by a halophilic ammonium-assimilating microbiome: A new strategy for saline wastewater treatment. Water Res. 207, 117832 (2021).
-
Tripathi, S., Chakrabarti, K. & Barua, S. Site specific bioinoculants for sustainable agriculture in coastal saline soil. 209–234. https://doi.org/10.1007/978-3-319-14595-2_8 (Springer, 2015).
-
Sadfi-Zouaoui, N. et al. Biological control of botrytis cinerea on stem wounds with moderately halophilic bacteria. World J. Microbiol. Biotechnol. 24, 2871–2877 (2008).
-
Masmoudi, F., Abdelmalek, N., Tounsi, S., Dunlap, C. A. & Trigui, M. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol. Res. 229, 126331 (2019).
-
Bharti, N., Pandey, S. S., Barnawal, D., Kalra, A. & Patel, V. K. Plant growth promoting rhizobacteria dietzia Natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 6, 34768 (2016).
-
Abuqamar, S. F. et al. Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture A review. Plant. Stress. 12, 100482 (2024).
-
Haque, M. M. et al. Decolorization, degradation and detoxification of mutagenic dye Methyl orange by novel biofilm producing plant growth-promoting rhizobacteria. Chemosphere 346, 140568 (2023).
-
Grote, M. & O’Malley, M. A. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol. Rev. 35, 1082–1099 (2011).
-
Oren, A. Life in hypersaline environments. 301–339. https://doi.org/10.1007/978-3-319-28071-4_8 (Springer, 2016).
-
Joulak, I. et al. Evaluation of the production of exopolysaccharides by newly isolated Halomonas strains from Tunisian hypersaline environments. Int. J. Biol. Macromol. 138, 658–666 (2019).
-
Joulak, I. et al. Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. Int. J. Biol. Macromol. 164, 95–104 (2020).
-
Paul, V. G. & Mormile, M. R. A case for the protection of saline and hypersaline environments: a microbiological perspective. FEMS Microbiol. Ecol. 93, (2017).
-
Deole, R. & Hoff, W. D. A potassium chloride to glycine betaine osmoprotectant switch in the extreme halophile halorhodospira halophila. Sci. Rep. 10, (2020).
-
Jones, B. E., Grant, W. D., Owenson, G. G. & Duckworth, A. W. Microbial diversity of soda lakes. Extremophiles 2, 191–200 (1998).
-
Harirchi, S. et al. Bacillales: from taxonomy to biotechnological and industrial perspectives. Microorganisms 10, 2355 (2022).
-
Phulpoto, I. A. et al. Enhanced oil recovery by potential Biosurfactant-Producing Halo-thermotolerant bacteria using soil washing and Sand-Packed glass column techniques. Curr. Microbiol. 77, 3300–3309 (2020).
-
Saibi, A. N. E. et al. Antimicrobial and enzymatic profiling of halophilic and halotolerant bacteria from a hypersaline lake ‘The great Sebkha of Oran, Northwestern algeria’. Geomicrobiol J. 39, 816–831 (2022).
-
Kanekar, P. P., Dhakephalkar, P. K., Kanekar, S. P. & Kelkar, A. S. Halophiles – taxonomy, diversity, physiology and applications. 1–34. https://doi.org/10.1007/978-94-007-2229-3_1 (Springer, 2011).
-
Gil, T. et al. Isolation and characterization of culturable osmotolerant microbiota in hypersaline and hypergypsic soils as new treatment for osmotic stress in plants. Soil. Syst. 7, 86 (2023).
-
Khan, M. A. et al. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant. Biol. 21, (2021).
-
Sarmiento-López, L. G. et al. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J. Biosci. Bioeng. 134, 21–28 (2022).
-
Ko, S. H. et al. Antioxidant effects of spinach (Spinacia Oleracea L.) supplementation in hyperlipidemic rats. Prev. Nutr. Food Sci. 19, 19–26 (2014).
-
Mitova, I., Nenova, L. & Shaban, N. Abiotic factors and their impact on growth characteristics of spinach (Spinacia oleracea). Bulg. J. Agric. Sci. 23, 817–824 (2017).
-
Ramezanifar, H., Hamzee Yazd, G., Mahmoodabadi, H., Yazdanpanah, M., Tavousi, M. & N. & Spinach growth regulation due to interactive Salinity, Water, and nitrogen stresses. J. Plant Growth Regul. 41, 1654–1671 (2021).
-
Liu, C., Yuan, Z. & Jiang, X. Plant responses and adaptations to salt stress: A review. Horticulturae 10, 1221 (2024).
-
Xu, C. & Mou, B. Responses of spinach to salinity and nutrient deficiency in Growth, Physiology, and nutritional value. J. Am. Soc. Hortic. Sci. 141, 12–21 (2016).
-
Saddique, M. et al. Amino acids application alleviated salinity stress in spinach (Spinacia Oleracea L.) by improving oxidative defense, osmolyte accumulation, and nutrient balance. Turkish J. Agric. Forestry. 46, 875–887 (2022).
-
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207 (1973).
-
Ramasamy, K. P. & Mahawar, L. Coping with salt stress-interaction of halotolerant bacteria in crop plants: A mini review. Front. Microbiol. 14, 1077561 (2023).
-
Egamberdieva, D. et al. Diversity and plant Growth-Promoting ability of Endophytic, halotolerant bacteria associated with tetragonia tetragonioides (Pall.) Kuntze. Plants 11, 49 (2021).
-
Naik, A. A., Tidke, S. D., Chambhare, M. R., Bansode, R. D. & Kabnoorkar, P. S. Impact of salinity on the morpho-biochemical traits of hydroponically cultivated spinacia Oleracea L. Biotechnologia 106, 49–62 (2025).
-
Rathakrishnan, D. & Gopalan, A. K. Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environ. Challenges. 6, 100426 (2021).
-
Gautam, A. & Phenol-Chloroform, D. N. A. Isolation method. 33–39 . https://doi.org/10.1007/978-3-030-94230-4_3 (Springer, 2022).
-
Pérez-Inocencio, J. et al. Identification of halophilic and halotolerant bacteria from the root soil of the halophyte sesuvium verrucosum Raf. Plants 11, 3355 (2022).
-
Albdaiwi, R. N., Khyami-Horani, H., Al-Sayaydeh, R., Alananbeh, K. M. & Ayad, J. Y. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Front. Microbiol. 10, (2019).
-
Jha, C. K., Saraf, M., Maheshwari, D. K., Patel, B. V. & Aeron, A. Enterobacter: role in plant growth promotion. 159–182. https://doi.org/10.1007/978-3-642-20332-9_8 (Springer, 2011).
-
Kumar, S. R. et al. Methane-derived microbial biostimulant reduces greenhouse gas emissions and improves rice yield. Front. Plant. Sci. 15, (2024).
-
Lim, J. M., Kim, C. J., Song, S. M. & Jeon, C. O. Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int. J. Syst. Evol. MicroBiol. 55, 165–170 (2005).
-
Sridhar, D. et al. The soil microbiome enhances sesame growth and oil composition, and soil nutrients under saline conditions. Sci. Rep. 15, (2025).
-
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).
-
Venkat, A., Bae, D. W. & Muneer, S. Circadian clock contributes to modulate salinity Stress-Responsive antioxidative mechanisms and Chloroplast proteome in spinacia Oleracea. Agriculture 13, 429 (2023).
-
Bajpai, V. K., Park, Y. H., Agrawal, P. & Phytochemicals Antioxidant and Anti-Lipid peroxidation activities of ethanolic extract of a medicinal Plant, A ndrographis paniculata. J. Food Biochem. 38, 584–591 (2014).
-
Pandey, S. & Gupta, S. Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Sci. Rep. 10, (2020).
-
Yadav, A. N. et al. Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann. Microbiol. 65, 611–629 (2014).
-
Hänelt, I. & Müller, V. Molecular mechanisms of adaptation of the moderately halophilic bacterium halobacillis halophilus to its environment. Life 3, 234–243 (2013).
-
Chaiharn, M., Chunhaleuchanon, S. & Lumyong, S. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol. Biotechnol. 25, 1919–1928 (2009).
-
Zhou, W., Qin, S., Lyu, D. & Zhang, P. Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet Cherry rootstocks. Arch. Agron. Soil. Sci. 61, 361–370 (2014).
-
Orhan, F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian J. Microbiol. 47, 621–627 (2016).
-
Kearl, J. et al. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front. Microbiol. 10, (2019).
-
Ha-Tran, D. M., Huang, E., Huang, C. C., Nguyen, T. T. M. & Hung, S. H. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. https://doi.org/10.20944/preprints202103.0041.v1 (2021).
-
Zhao, J. et al. Synergistic effects of salt-Tolerant PGPR and foliar silicon on Pak Choi antioxidant defense under salt stress. Plants (Basel Switzerland). 14, 2065 (2025).
-
Shultana, R. et al. The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy 12, 2266 (2022).
-
Waheed, S. et al. Ca2SiO4 chemigation reduces cadmium localization in the subcellular leaf fractions of spinach (Spinacia Oleracea L.) under cadmium stress. Ecotoxicol. Environ. Saf. 207, 111230 (2020).
-
Gupta, S., Chauhan, R. & Pandey, S. Biopriming with halotolerant microbes enhances growth performance, resilience and rhizospheric microbial diversity of solanum melongena under saline conditions. Plant Physiol. Biochem. PPB 229, (2025).
-
Kumar Arora, N. et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J. Adv. Res. 26, 69–82 (2020).
-
Daraz, U. et al. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in brassica juncea through ion homeostasis. Ecotoxicol. Environ. Saf. 267, 115657 (2023).
-
Khan, M. Y. et al. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Front. Microbiol. 13, (2022).
