References
-
Tottoli, E. M. et al. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 12, 735. (2020). https://doi.org/10.3390/PHARMACEUTICS12080735
-
Rousselle, P., Braye, F. & Dayan, G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv. Drug Deliv Rev. 146, 344–365. https://doi.org/10.1016/J.ADDR.2018.06.019 (2019).
-
Rezvani Ghomi, E. et al. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr. Opin. Biomed. Eng. 22, 100393. https://doi.org/10.1016/J.COBME.2022.100393 (2022).
-
Mir, M. et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 7, 1. https://doi.org/10.1007/S40204-018-0083-4 (2018).
-
Savencu, I., Iurian, S., Porfire, A., Bogdan, C. & Tomuță, I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 168, 105059. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105059 (2021).
-
Ho, T. C. et al. Hydrogels: properties and applications in biomedicine. Molecules 27, 2902. https://doi.org/10.3390/MOLECULES27092902 (2022).
-
Jiang, Z. et al. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 15, 1829 (2023). https://doi.org/10.3390/PHARMACEUTICS15071829
-
Eissa, N. G. & Elsabahy, M. Applying drug-loaded electrospun nanofibers to antimicrobial-resistant skin infections. Nanomedicine https://doi.org/10.1080/17435889.2025.2528592 (2025).
-
Kamoun, E. A. et al. Recent progress of Polymer-Based biosensors for cancer diagnostic applications: natural versus synthetic polymers. ACS Omega. https://doi.org/10.1021/acsomega.4c10652 (2025).
-
Goher, S. S. et al. Electrospun tamarindus indica-loaded antimicrobial PMMA/cellulose acetate/PEO nanofibrous scaffolds for accelerated wound healing: In-vitro and in-vivo assessments. Int. J. Biol. Macromol. 258, 128793. https://doi.org/10.1016/J.IJBIOMAC.2023.128793 (2024).
-
Abdelazim, E. B. et al. In vitro and in vivo studies of syzygium cumini-loaded electrospun PLGA/PMMA/collagen nanofibers for accelerating topical wound healing. RSC Adv. 14, 101–117. https://doi.org/10.1039/D3RA06355K (2024).
-
Vatanpour, V., Teber, O. O., Mehrabi, M. & Koyuncu, I. Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective. Mater. Today Chem. 28, 101381. https://doi.org/10.1016/J.MTCHEM.2023.101381 (2023).
-
Jin, S. G. Production and application of biomaterials based on Polyvinyl alcohol (PVA) as wound dressing. Chem. Asian J. 17, e202200595. https://doi.org/10.1002/ASIA.202200595 (2022).
-
Maleki, H., Azimi, B., Ismaeilimoghadam, S. & Danti, S. Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications, Appl. Sci. 12, 3192 (2022). https://doi.org/10.3390/APP12063192
-
Pesaranhajiabbas, E., Misra, M. & Mohanty, A. K. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review. Int. J. Biol. Macromol. 253, 126231. https://doi.org/10.1016/J.IJBIOMAC.2023.126231 (2023).
-
Elsayed, R. E., Madkour, T. M. & Azzam, R. A. Tailored-design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing Mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int. J. Biol. Macromol. 164, 1984–1999. https://doi.org/10.1016/J.IJBIOMAC.2020.07.316 (2020).
-
Ebrahimi, F., Ramezani, H. & Dana Poly lactic acid (PLA) polymers: from properties to biomedical applications. Int. J. Polym. Mater. Polym. Biomaterials. 71, 1117–1130. https://doi.org/10.1080/00914037.2021.1944140 (2022).
-
Chen, H. L., Chung, J. W. Y., Yan, V. C. M. & Wong, T. K. S. Polylactic Acid-Based biomaterials in wound healing: A systematic review. Adv. Skin. Wound Care. 36 https://doi.org/10.1097/ASW.0000000000000011 (2023).
-
Lu, X., Zhou, L. & Song, W. Recent progress of electrospun nanofiber dressing in the promotion of wound healing. Polym. (Basel). 16, 2596. https://doi.org/10.3390/POLYM16182596 (2024).
-
Christie, P. Roflumilast: a selective phosphodiesterase 4 inhibitor. Drugs Today (Barc). 41, 667–675. https://doi.org/10.1358/DOT.2005.41.10.920428 (2005).
-
Gyldenløve, M. et al. Efficacy and safety of oral Roflumilast for moderate-to-severe psoriasis—a randomized controlled trial (PSORRO), the lancet regional. Health – Europe. 30 https://doi.org/10.1016/j.lanepe.2023.100639 (2023).
-
Wedzicha, J. A., Calverley, P. M. & Rabe, K. F. Roflumilast: A review of its use in the treatment of COPD. Int. J. COPD. 11, 81–90. https://doi.org/10.2147/COPD.S89849 (2016).
-
Zhang, X. et al. Pharmacological mechanism of Roflumilast in the treatment of asthma–COPD overlap. Drug Des. Devel Ther. 12, 2371. https://doi.org/10.2147/DDDT.S165161 (2018).
-
Zhong, B. et al. Roflumilast reduced the IL-18-Induced inflammatory response in Fibroblast-Like synoviocytes (FLS). ACS Omega. 6, 2149. https://doi.org/10.1021/ACSOMEGA.0C05281 (2021).
-
Balakrishnan, B., Mohanty, M., Fernandez, A. C., Mohanan, P. V. & Jayakrishnan, A. Evaluation of the effect of incorporation of Dibutyryl Cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27, 1355–1361. https://doi.org/10.1016/J.BIOMATERIALS.2005.08.021 (2006).
-
Ahmed, M. M. et al. Development of Apremilast Nanoemulsion-Loaded Chitosan Gels: In Vitro Evaluations and Anti-Inflammatory and Wound Healing Studies on a Rat Model. Gels. 8, 253 (2022). https://doi.org/10.3390/GELS8050253
-
Dioguardi, F. S., Corsetti, G., Szlas, A., Kurek, J. M. & Krejpcio, Z. The potential of L-Arginine in prevention and treatment of disturbed carbohydrate and lipid Metabolism—A. Rev. Nutrients 2022. 14, 961. https://doi.org/10.3390/NU14050961 (2022).
-
Morris, S. M. Arginine: beyond protein. Am. J. Clin. Nutr. 83, 508S–512. https://doi.org/10.1093/AJCN/83.2.508S (2006). S.
-
Oyovwi, M. O. & Atere, A. D. Exploring the medicinal significance of l-Arginine mediated nitric oxide in preventing health disorders. Eur. J. Med. Chem. Rep. 12, 100175. https://doi.org/10.1016/J.EJMCR.2024.100175 (2024).
-
McKay, T. B., Priyadarsini, S., Rowsey, T. & Karamichos, D. Arginine supplementation promotes extracellular matrix and metabolic changes in keratoconus. Cells 10, 2076. https://doi.org/10.3390/CELLS10082076/S1 (2021).
-
Hussein, Y. et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: nanofibers optimization and in vitro bioevaluation. Int. J. Biol. Macromol. 164, 667–676. https://doi.org/10.1016/j.ijbiomac.2020.07.126 (2020).
-
Wu, M. et al. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J. Mater. Chem. B. 9, 7063–7075. https://doi.org/10.1039/D1TB00847A (2021).
-
Wu, G., Meininger, C. J., McNeal, C. J., Bazer, F. W. & Rhoads, J. M. Role of L-Arginine in nitric oxide synthesis and health in humans. In Amino Acids in Nutrition and Health: Amino Acids in Gene Expression, Metabolic Regulation, and Exercising Performance (ed. Wu, G.) 167–187 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-74180-8_10.
-
Elbadry, A. M. M., Gomaa, E., Faisal, M. M., Kamoun, E. A. & Salim, S. A. Smart dressings accelerating wound healing with Tranexamic acid-infused aligned electrospun nanofibers: in vitro and in vivo assessments. J. Drug Deliv Sci. Technol. 114, 107542. https://doi.org/10.1016/j.jddst.2025.107542 (2025).
-
Fatahian, R. & Erfani, R. Surrogate modeling of electrospun PVA/PLA nanofibers using artificial neural network for biomedical applications. Sci. Rep. 15, 12886 (2025). https://doi.org/10.1038/s41598-025-94608-8
-
Zhong, G. et al. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int. J. Biol. Macromol. 234, 123693. https://doi.org/10.1016/J.IJBIOMAC.2023.123693 (2023).
-
Brown, W. M. Treating COPD with PDE 4 inhibitors. Int. J. Chron. Obstruct Pulmon Dis. 2, 517 (2007). https://pmc.ncbi.nlm.nih.gov/articles/PMC2699952/ accessed December 22, 2025.
-
Ashraf, H., Salim, S. A., EL-Moslamy, S. H., Loutfy, S. A. & Kamoun, E. A. An injectable in situ forming Collagen/Alginate/CaSO4 composite hydrogel for tissue engineering applications: Optimization, characterization and in vitro assessments. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-024-08922-w (2024).
-
Ibrahim, R. M. et al. Cutting-edge biomaterials for advanced biomedical uses: self-gelation of l-arginine-loaded chitosan/PVA/vanillin hydrogel for accelerating topical wound healing and skin regeneration. RSC Adv. 14, 31126–31142. https://doi.org/10.1039/d4ra04430d (2024).
-
Mirmajidi, T., Chogan, F., Rezayan, A. H. & Sharifi, A. M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 596, 120213. https://doi.org/10.1016/j.ijpharm.2021.120213 (2021).
-
Higashi, S., Hirai, T., Matsubara, M., Yoshida, H. & Beniya, A. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Sci. Rep. 10, 1–8. https://doi.org/10.1038/S41598-020-69136-2;SUBJMETA (2020).
-
Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: Methods, Materials, and applications. Chem. Rev. 119, 5298. https://doi.org/10.1021/ACS.CHEMREV.8B00593 (2019).
-
Nguyen, T. T. T., Ghosh, C., Hwang, S. G., Tran, L. D. & Park, J. S. Characteristics of curcumin-loaded Poly (lactic acid) nanofibers for wound healing. J. Mater. Sci. 48, 7125–7133. https://doi.org/10.1007/S10853-013-7527-Y/FIGURES/8 (2013).
-
Liu, Y., Liang, X., Wang, S., Qin, W. & Zhang, Q. Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers 10, 561 (2018). https://doi.org/10.3390/POLYM10050561
-
Hashmi, M., Ullah, S. & Kim, I. S. Electrospun momordica Charantia incorporated Polyvinyl alcohol (PVA) nanofibers for antibacterial applications. Mater. Today Commun. 24, 101161. https://doi.org/10.1016/J.MTCOMM.2020.101161 (2020).
-
Ge, J. C., Wu, G., Yoon, S. K., Kim, M. S. & Choi, N. J. Study on the Preparation and Lipophilic Properties of Polyvinyl Alcohol (PVA) Nanofiber Membranes via Green Electrospinning, Nanomaterials 11, 2514 (2021). https://doi.org/10.3390/NANO11102514
-
Abd El-aziz, A. M., El-Maghraby, A. & Taha, N. A. Comparison between Polyvinyl alcohol (PVA) nanofiber and Polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2 + ions from wastewater. Arab. J. Chem. 10, 1052–1060. https://doi.org/10.1016/J.ARABJC.2016.09.025 (2017).
-
Maded, Z. K. et al. Development and optimization of Dipyridamole- and Roflumilast-Loaded nanoemulsion and nanoemulgel for enhanced skin permeation: Formulation, Characterization, and in vitro assessment. Pharmaceuticals 17, 803. https://doi.org/10.3390/PH17060803/S1 (2024).
-
Ali, F., Kumar, R., Sahu, P. L. & Singh, G. N. Physicochemical characterization and compatibility study of Roflumilast with various pharmaceutical excipients. J. Therm. Anal. Calorim. 130, 1627–1641. https://doi.org/10.1007/S10973-017-6274-8/TABLES/4 (2017).
-
Lv, J. et al. Deep eutectic solvents based on L-Arginine and 2-Hydroxypropyl-β-Cyclodextrin for drug carrier and penetration enhancement. AAPS PharmSciTech. 24, 1–12. https://doi.org/10.1208/S12249-023-02638-0/TABLES/3 (2023).
-
Mohammadian, F. & Eatemadi, A. Drug loading and delivery using nanofibers scaffolds. Artif. Cells Nanomed. Biotechnol. 45, 881–888. https://doi.org/10.1080/21691401.2016.1185726 (2017).
-
Elbadry, A. M. M. et al. Enhancing topical delivery of N-acetylcysteine and collagen via a novel electrospun collagen/PMMA nanofibrous Mats as facial mask development: nanofibers optimization and in vitro experiments. J. Drug Deliv Sci. Technol. 104 https://doi.org/10.1016/j.jddst.2024.106566 (2025).
-
Roflumilast crystal form compound, preparation method, composition and applications thereof. (2011).
-
Mahmoud, A. A., Elkasabgy, N. A. & Abdelkhalek, A. A. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug Roflumilast. Eur. J. Pharm. Sci. 122, 64–76. https://doi.org/10.1016/J.EJPS.2018.06.015 (2018).
-
Mallik, T. & Kar, T. Growth and characterization of nonlinear optical l-arginine dihydrate single crystals. J. Cryst. Growth. 285, 178–182. https://doi.org/10.1016/J.JCRYSGRO.2005.08.025 (2005).
-
Yu, D. G., Li, J. J., Williams, G. R. & Zhao, M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Controlled Release. 292, 91–110. https://doi.org/10.1016/J.JCONREL.2018.08.016 (2018).
-
Huo, P. et al. Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics 13(13), 1228. https://doi.org/10.3390/PHARMACEUTICS13081228 (2021).
-
de Mohac, L. M., Keating, A. V., de F. Pina, M. & Raimi-Abraham, B. T. Engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery. Pharmaceutics 11, 7. https://doi.org/10.3390/PHARMACEUTICS11010007 (2018).
-
Mirzaeei, S., Taghe, S., Asare-Addo, K. & Nokhodchi, A. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: an in vitro and. Vivo Evaluation AAPS PharmSciTech. 22, 1–13. https://doi.org/10.1208/S12249-021-02051-5/TABLES/2 (2021).
-
Çay, A. & Miraftab, M. Perrin Akçakoca Kumbasar, characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. Eur. Polym. J. 61, 253–262. https://doi.org/10.1016/J.EURPOLYMJ.2014.10.017 (2014).
-
Karami, Z., Rezaeian, I., Zahedi, P. & Abdollahi, M. Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous Mats containing thymol as an herbal drug for effective wound healing. J. Appl. Polym. Sci. 129, 756–766. https://doi.org/10.1002/APP.38683 (2013).
-
Protsak, I. S. & Morozov, Y. M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review, Gels, 11, 30 (2025). https://doi.org/10.3390/GELS11010030
-
Sill, T. J. & von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006. https://doi.org/10.1016/J.BIOMATERIALS.2008.01.011 (2008).
-
Annabi, N. et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part. B Rev. 16, 371. https://doi.org/10.1089/TEN.TEB.2009.0639 (2010).
-
Roy, S. G., Haldar, U. & De, P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS Appl. Mater. Interfaces. 6, 4233–4241. https://doi.org/10.1021/AM405932F/SUPPL_FILE/AM405932F_SI_001.PDF (2014).
