Berdasco, M. & Esteller, M. Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet. 20, 109–127 (2019).
Romanowska, J. et al. Gene-methylation interactions: discovering region-wise DNA methylation levels that modify SNP-associated disease risk. Clin. Epigenet. 12, 109 (2020).
Unger Avila, P. et al. Gene regulatory networks in disease and ageing. Nat. Rev. Nephrol. 20, 616–633 (2024).
Robusti, G., Vai, A., Bonaldi, T. & Noberini, R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin. Epigenet. 14, 145 (2022).
Lussier, A. A. et al. Technical variability across the 450K, EPICv1, and EPICv2 DNA methylation arrays: lessons learned for clinical and longitudinal studies. Clin. Epigenet. 16, 166 (2024).
Smith, Z. D., Hetzel, S. & Meissner, A. DNA methylation in mammalian development and disease. Nat. Rev. Genet. 26, 7–30 (2025).
Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C. & Berdasco, M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenet. 11, 174 (2019).
Sarno, F. et al. Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin. Epigenet. 13, 66 (2021).
Mercuri, E. et al. Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 23, 393–403 (2024).
Feehley, T., O’Donnell, C. W., Mendlein, J., Karande, M. & McCauley, T. Drugging the epigenome in the age of precision medicine. Clin. Epigenet. 15, 6 (2023).
Liu, Y.-C. et al. Demethylation and up-regulation of an oncogene after hypomethylating therapy. N. Engl. J. Med. 386, 1998–2010 (2022).
Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).
Roth, G. V., Gengaro, I. R. & Qi, L. S. Precision epigenetic editing: technological advances, enduring challenges, and therapeutic applications. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.07.007 (2024).
McCutcheon, S. R., Rohm, D., Iglesias, N. & Gersbach, C. A. Epigenome editing technologies for discovery and medicine. Nat. Biotechnol. 42, 1199–1217 (2024).
Snowden, A. W. et al. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res. 63, 8968–8976 (2003).
Carvin, C. D., Parr, R. D. & Kladde, M. P. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res. 31, 6493–6501 (2003).
de Groote, M. L., Verschure, P. J. & Rots, M. G. Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 40, 10596–10613 (2012).
Falahi, F. et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol. Cancer Res. 11, 1029–1039 (2013).
Rivenbark, A. G. et al. Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7, 350–360 (2012).
Siddique, A. N. et al. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J. Mol. Biol. 425, 479–491 (2013).
Gregory, D. J., Zhang, Y., Kobzik, L. & Fedulov, A. V. Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8, 1205–1212 (2013).
Maeder, M. L. et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142 (2013).
Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).
Mendenhall, E. M. et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133–1136 (2013).
Chen, H. et al. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 42, 1563–1574 (2014).
Cappelluti, M. A. et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 627, 416–423 (2024).
Tremblay, F. et al. A potent epigenetic editor targeting human PCSK9 for durable reduction of low-density lipoprotein cholesterol levels. Nat. Med. 31, 1329–1338 (2025).
Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).
Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023).
Wisman, G. B. A. et al. Clinical promise and applications of epigenetic biomarkers. Clin. Epigenet. 16, 192 (2024).
Gold, S. & Shilatifard, A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr. Opin. Genet. Dev. 86, 102181 (2024).
Noberini, R. et al. Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clin. Epigenet. 13, 145 (2021).
Adli, M. et al. MorPhiC Consortium: towards functional characterization of all human genes. Nature 638, 351–359 (2025).
Clark, S. J. & Molloy, P. L. Early insights into cancer epigenetics: gene promoter hypermethylation emerges as a potential biomarker for cancer detection. Cancer Res. 82, 1461–1463 (2022).
Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. Targeting class I histone deacetylases in a ‘complex’ environment. Trends Pharmacol. Sci. 38, 363–377 (2017).
Li, J. et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896 (2021).
Uil, T. G., Haisma, H. J. & Rots, M. G. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res. 31, 6064–6078 (2003).
Geel, T. M. et al. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170077 (2018).
van der Gun, B. T. F. et al. Targeted DNA methylation by a DNA methyltransferase coupled to a triple helix forming oligonucleotide to down-regulate the epithelial cell adhesion molecule. Bioconjug. Chem. 21, 1239–1245 (2010).
Jurkowski, T. P., Ravichandran, M. & Stepper, P. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin. Epigenet. 7, 18 (2015).
Zheng, R. et al. Progress and perspective of CRISPR-Cas9 technology in translational medicine. Adv. Sci. 10, e2300195 (2023).
Rots, M. G. & Jeltsch, A. in Epigenome Editing: Methods and Protocols (eds. Jeltsch, A. & Rots, M. G.) 3–20 (Springer US, 2024). https://doi.org/10.1007/978-1-0716-4051-7_1.
Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).
Blancafort, P., Segal, D. J. & Barbas, C. F. 3rd. Designing transcription factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371 (2004).
Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2014).
Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02442-6 (2024).
Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).
Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).
Neumann, E. N. et al. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 384, ado7082 (2024).
Bailus, B. J. et al. Protein delivery of an artificial transcription factor restores widespread ube3a expression in an angelman syndrome mouse brain. Mol. Ther. 24, 548–555 (2016).
Beyersdorf, J. P. et al. Robust, durable gene activation in vivo via mRNA-encoded activators. ACS Nano 16, 5660–5671 (2022).
Carosso, G. A. et al. Discovery of hypercompact epigenetic modulators for persistent CRISPR-mediated gene activation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.02.543492 (2024).
Kantor, B. et al. The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders. Nat. Commun. 15, 7259 (2024).
O’Geen, H. et al. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an angelman syndrome mouse model. Mol. Ther. 31, 1088–1105 (2023).
Waryah, C. et al. Synthetic epigenetic reprogramming of mesenchymal to epithelial states using the CRISPR/dCas9 platform in triple negative breast cancer. Adv. Sci. 10, e2301802 (2023).
Wang, K. et al. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer-promoter interactions. Nucleic Acids Res. 50, 7842–7855 (2022).
Braun, S. M. G. et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560 (2017).
Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).
Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).
Kadoch, C. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).
Ding, L. et al. DNA methylation-independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins. Life Sci. Alliance 5, e202101321 (2022).
Groner, A. C. et al. The Krüppel-associated box repressor domain can induce reversible heterochromatization of a mouse locus in vivo. J. Biol. Chem. 287, 25361–25369 (2012).
Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).
Lensch, S. et al. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 11, e75115 (2022).
Fujimori, T. et al. Single-cell chromatin state transitions during epigenetic memory formation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.560616 (2023).
Sinha, J. et al. The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. Mol. Cell 84, 3899–3915.e7 (2024).
Tibben, B. M. & Rothbart, S. B. Mechanisms of DNA methylation regulatory function and crosstalk with histone lysine methylation. J. Mol. Biol. 436, 168394 (2024).
Dominguez, A. A. et al. CRISPR-mediated synergistic epigenetic and transcriptional control. CRISPR J. 5, 264–275 (2022).
O’Geen, H., Tomkova, M., Combs, J. A., Tilley, E. K. & Segal, D. J. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 50, 3239–3253 (2022).
Chan, W. F. et al. Activation of stably silenced genes by recruitment of a synthetic de-methylating module. Nat. Commun. 13, 5582 (2022).
Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).
Kannan, S. et al. Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02655-3 (2025).
Li, H.-S. et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 378, 1227–1234 (2022).
O’Donnell, C. W. et al. Programmable mRNA therapeutics for controlled epigenomic modulation of single and multiplexed gene expression in diverse diseases. Nat. Commun. 16, 2517 (2025).
Alcantar, M. A., English, M. A., Valeri, J. A. & Collins, J. J. A high-throughput synthetic biology approach for studying combinatorial chromatin-based transcriptional regulation. Mol. Cell 84, 2382–2396.e9 (2024).
Wilson, C. M. et al. Combinatorial effector targeting (COMET) for transcriptional modulation and locus-specific biochemistry. Preprint at bioRxiv https://doi.org/10.1101/2024.10.28.620517 (2024).
Moon, H. C., Herschl, M. H., Pawluk, A., Konermann, S. & Hsu, P. D. A combinatorial domain screening platform reveals epigenetic effector interactions for transcriptional perturbation. Preprint at bioRxiv https://doi.org/10.1101/2024.10.28.620683 (2024).
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
Epigenetics, Second Edition. (Cold Spring Harbor Laboratory Press, 2015).
Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).
Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).
Cortés-Mancera, F. M., Sarno, F., Goubert, D. & Rots, M. G. Gene-targeted DNA methylation: towards long-lasting reprogramming of gene expression? Adv. Exp. Med. Biol. 1389, 515–533 (2022).
Marakulina, D. et al. EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic Acids Res. 51, D564–D570 (2023).
Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).
Turner, B. M. The adjustable nucleosome: an epigenetic signaling module. Trends Genet. 28, 436–444 (2012).
Wang, Z. et al. Prediction of histone post-translational modification patterns based on nascent transcription data. Nat. Genet. 54, 295–305 (2022).
Morgan, M. A. J. & Shilatifard, A. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci. Adv. 9, eadg6593 (2023).
Li, D. et al. Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819–833.e6 (2017).
Pacalin, N. M. et al. Bidirectional epigenetic editing reveals hierarchies in gene regulation. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02213-3 (2024).
Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
Sankar, A. et al. Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat. Genet. 54, 754–760 (2022).
Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 615, 339–348 (2023).
Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).
Policarpi, C., Munafò, M., Tsagkris, S., Carlini, V. & Hackett, J. A. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat. Genet. 56, 1168–1180 (2024).
Cabrera, A. et al. The sound of silence: transgene silencing in mammalian cell engineering. Cell Syst. 13, 950–973 (2022).
Cheng, A. W. et al. Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26, 254–257 (2016).
Yano, N. & Fedulov, A. V. Targeted DNA demethylation: vectors, effectors and perspectives. Biomedicines 11, 1334 (2023).
O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).
O’Geen, H. et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26 (2019).
Policarpi, C., Dabin, J. & Hackett, J. A. Epigenetic editing: dissecting chromatin function in context. Bioessays 43, e2000316 (2021).
Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 21, 655–675 (2022).
Seem, K., Kaur, S., Kumar, S. & Mohapatra, T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit. Rev. Biochem. Mol. Biol. 59, 69–98 (2024).
Goell, J. H. & Hilton, I. B. CRISPR/Cas-based epigenome editing: advances, applications, and clinical utility. Trends Biotechnol. 39, 678–691 (2021).
Broche, J., Kungulovski, G., Bashtrykov, P., Rathert, P. & Jeltsch, A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res. 49, 158–176 (2021).
de Mendoza, A. et al. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol. 23, 163 (2022).
Ma, Y., Budde, M. W., Zhu, J. & Elowitz, M. B. Tuning methylation-dependent silencing dynamics by synthetic modulation of CpG density. ACS Synth. Biol. 12, 2536–2545 (2023).
Sapozhnikov, D. M. & Szyf, M. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression. Nat. Protoc. 17, 2840–2881 (2022).
Ferrie, J. J. et al. P300 is an obligate integrator of combinatorial transcription factor inputs. Mol. Cell 84, 234–243.e4 (2024).
Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).
Zeng, C. et al. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat. Commun. 14, 4944 (2023).
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
Fulco, C. P. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).
Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).
Albrecht, C. et al. Locus-specific and stable DNA demethylation at the H19/ IGF2 ICR1 by epigenome editing using a dCas9-SunTag system and the catalytic domain of TET1. Genes 15, 80 (2024).
Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).
Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).
Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).
Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).
Heller, E. A. et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17, 1720–1727 (2014).
Bustos, F. J. et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain 140, 3252–3268 (2017).
Wegmann, S. et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7, eabe1611 (2021).
Monteferrario, D. et al. Epigenetic control of multiple genes with a lentiviral vector encoding transcriptional repressors fused to compact zinc finger arrays. Mol. Ther. Methods Clin. Dev. 32, 101255 (2024).
Guilinger, J. P. et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods 11, 429–435 (2014).
Polstein, L. R. et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25, 1158–1169 (2015).
Ichikawa, D. M. et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat. Biotechnol. 41, 1117–1129 (2023).
Tadić, V., Josipović, G., Zoldoš, V. & Vojta, A. CRISPR/Cas9-based epigenome editing: an overview of dCas9-based tools with special emphasis on off-target activity. Methods 164-165, 109–119 (2019).
Soubeyrand, S., Lau, P., Peters, V. & McPherson, R. Off-target effects of CRISPRa on interleukin-6 expression. PLoS ONE 14, e0224113 (2019).
Kulcsár, P. I. et al. A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets. Nat. Commun. 14, 5746 (2023).
Ryan, D. E. et al. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 46, 792–803 (2018).
Lau, C.-H., Liang, Q.-L. & Zhu, H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res. https://doi.org/10.1007/s11248-024-00404-x (2024).
Chen, Y. & Wang, X. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection. Bioinformatics 38, 5175–5181 (2022).
Mu, W. et al. Machine learning methods for predicting guide RNA effects in CRISPR epigenome editing experiments. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590188 (2024).
Senapedis, W. et al. Targeted transcriptional downregulation of MYC using epigenomic controllers demonstrates antitumor activity in hepatocellular carcinoma models. Nat. Commun. 15, 7875 (2024).
Yano, N., Ramar, M., Gregory, D. J. & Fedulov, A. V. Vector-free intra-airway in vivo epigenetic editing. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2025.05.007 (2025).
Roman Azcona, M. S. et al. Sustained and specific multiplexed immune checkpoint modulation in CAR T cells induced by targeted epigenome editing. Mol. Ther. Nucleic Acids 36, 102618 (2025).
Saunderson, E. A. et al. CRISPR/dCas9 DNA methylation editing is heritable during human hematopoiesis and shapes immune progeny. Proc. Natl Acad. Sci. USA 120, e2300224120 (2023).
Yagci, Z. B., Kelkar, G. R., Johnson, T. J., Sen, D. & Keung, A. J. Designing epigenome editors: considerations of biochemical and locus specificities. Methods Mol. Biol. 2842, 23–55 (2024).
Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).
Lin, L. et al. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7, 1–19 (2018).
Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).
Stolz, P. et al. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Nucleic Acids Res. 50, 8491–8511 (2022).
Hofacker, D. et al. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int. J. Mol. Sci. 21, 502 (2020).
Ślaska-Kiss, K. et al. Lowering DNA binding affinity of SssI DNA methyltransferase does not enhance the specificity of targeted DNA methylation in E. coli. Sci. Rep. 11, 15226 (2021).
Liesenfelder, S. et al. Epigenetic editing at individual age-associated CpGs affects the genome-wide epigenetic aging landscape. Nat. Aging 5, 997–1009 (2025).
Rajaram, N., Kouroukli, A. G., Bens, S., Bashtrykov, P. & Jeltsch, A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin 16, 41 (2023).
Rajaram, N., Benzler, K., Bashtrykov, P. & Jeltsch, A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 27, 111007 (2024).
Becirovic, E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell. Mol. Life Sci. 79, 130 (2022).
Kallimasioti-Pazi, E. M. et al. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol. 16, e2005595 (2018).
Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677 (2016).
Verkuijl, S. A. & Rots, M. G. The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies. Curr. Opin. Biotechnol. 55, 68–73 (2019).
Zou, R. S. et al. Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites. Nat. Cell Biol. 24, 1433–1444 (2022).
Kim, S. et al. Chromatin structure and context-dependent sequence features control prime editing efficiency. Front. Genet. 14, 1222112 (2023).
Friskes, A. et al. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res. 50, 9930–9947 (2022).
Li, X. et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell 187, 2411–2427.e25 (2024).
Schep, R. et al. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res. 52, 8815–8832 (2024).
Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).
Petiwala, S. et al. Optimization of genomewide CRISPR screens using AsCas12a and multi-guide arrays. CRISPR J. 6, 75–82 (2023).
Wu, W. Y., Adiego-Pérez, B. & van der Oost, J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat. Biotechnol. 42, 1807–1821 (2024).
Mlambo, T. et al. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 46, 4456–4468 (2018).
Whittaker, M. N. et al. Epigenome editing durability varies widely across cardiovascular disease target genes. Arterioscler. Thromb. Vasc. Biol. 43, 2075–2077 (2023).
Lodewijk, G. A. et al. Self-organization of mouse embryonic stem cells into reproducible pre-gastrulation embryo models via CRISPRa programming. Cell Stem Cell 32, 895–913.e8 (2025).
Baumann, V. et al. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat. Commun. 10, 2119 (2019).
Stolzenburg, S. et al. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34, 5427–5435 (2015).
Saunderson, E. A. et al. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun. 8, 1450 (2017).
Kungulovski, G. et al. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8, 12 (2015).
Kouroukli, A. G. et al. Targeting oncogenic TERT promoter variants by allele-specific epigenome editing. Clin. Epigenetics 15, 183 (2023).
Tak, Y. E. et al. CRISPR PERSIST-On enables heritable and fine-tunable human gene activation. Preprint at bioRxiv https://doi.org/10.1101/2024.04.26.590475 (2024).
Kressler, C. et al. Targeted DE-methylation of the FOXP3-TSDR is sufficient to induce physiological FOXP3 expression but not a functional Treg phenotype. Front. Immunol. 11, 609891 (2020).
Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).
Rohm, D. et al. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. Cell Genom. 5, 100770 (2025).
Moussa, H. F. et al. Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nat. Commun. 10, 1931 (2019).
Carlini, V., Policarpi, C. & Hackett, J. A. Epigenetic inheritance is gated by naïve pluripotency and Dppa2. EMBO J. 41, e108677 (2022).
Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).
Yamagata, T. et al. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of dravet syndrome model mice. Neurobiol. Dis. 141, 104954 (2020).
Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).
Li, R. et al. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biol. 18, e3000749 (2020).
Gomez, J. A., Beitnere, U. & Segal, D. J. Live-animal epigenome editing: convergence of novel techniques. Trends Genet. 35, 527–541 (2019).
Bendixen, L., Jensen, T. I. & Bak, R. O. CRISPR-Cas-mediated transcriptional modulation: the therapeutic promises of CRISPRa and CRISPRi. Mol. Ther. 31, 1920–1937 (2023).
Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).
Moghadam, F. et al. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat. Cell Biol. 22, 1143–1154 (2020).
Jin, Q. et al. Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation. Genome Biol. 24, 8 (2023).
Horii, T. et al. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol. 21, 77 (2020).
Horii, T., Morita, S., Kimura, M. & Hatada, I. Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system. Epigenetics Chromatin 15, 40 (2022).
Liu, Y. et al. Epigenetic editing alleviates Angelman syndrome phenotype in mice by unsilencing paternal Ube3a. Cell Discov. 10, 97 (2024).
Lei, Y. et al. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat. Commun. 8, 16026 (2017).
Wei, Y. et al. DNA methylation analysis and editing in single mammalian oocytes. Proc. Natl Acad. Sci. USA 116, 9883–9892 (2019).
Lu, Z. et al. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death Dis. 11, 85 (2020).
Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).
Wei, Y., Yang, C.-R. & Zhao, Z.-A. Viable offspring derived from single unfertilized mammalian oocytes. Proc. Natl Acad. Sci. USA 119, e2115248119 (2022).
Liang, F. et al. In vivo DNA methylation editing in zebrafish. Epigenetics 18, 2192326 (2023).
Luviano, N. et al. Hit-and-run epigenetic editing for vectors of snail-borne parasitic diseases. Front. Cell Dev. Biol. 10, 794650 (2022).
Fukushima, H. S., Takeda, H. & Nakamura, R. Targeted in vivo epigenome editing of H3K27me3. Epigenetics Chromatin 12, 17 (2019).
Williams, R. M. et al. Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development 145, dev160333 (2018).
Ou, K. et al. Targeted demethylation at the CDKN1C/p57 locus induces human β cell replication. J. Clin. Invest. 129, 209–214 (2019).
Đorđević, M. et al. EpiCRISPR targeted methylation of Arx gene initiates transient switch of mouse pancreatic alpha to insulin-producing cells. Front. Endocrinol. 14, 1134478 (2023).
Cui, C. et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 16, 252 (2015).
Li, K. et al. Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 6, 10030–10044 (2015).
Wang, Q. et al. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett. 448, 132–143 (2019).
He, W. et al. Targeted demethylation at ZNF154 promotor upregulates ZNF154 expression and inhibits the proliferation and migration of esophageal squamous carcinoma cells. Oncogene 41, 4537–4546 (2022).
Yang, J. et al. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin. Transl. Med. 13, e1423 (2023).
Lin, K. et al. Multiplexed epigenetic memory editing using CRISPRoff sensitizes glioblastoma to chemotherapy. Neuro. Oncol. https://doi.org/10.1093/neuonc/noaf055 (2025).
Sarno, F. et al. Epigenetic editing and epi-drugs: a combination strategy to simultaneously target KDM4 as a novel anticancer approach. Clin. Epigenetics 17, 105 (2025).
Mabe, N. W. et al. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J. Clin. Invest. 128, 4413–4428 (2018).
Wang, L. et al. Chromatin remodeling of colorectal cancer liver metastasis is mediated by an HGF-PU.1-DPP4 axis. Adv. Sci. 8, e2004673 (2021).
Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992.e6 (2018).
Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).
Qian, J. et al. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666 (2023).
Aleyasin, H. et al. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating intermale aggression. J. Neurosci. 38, 5913–5924 (2018).
Chen, L.-F. et al. Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep. 26, 1174–1188.e5 (2019).
Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).
Savell, K. E. et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci. Adv. 6, eaba4221 (2020).
Caglayan, E. et al. Molecular features driving cellular complexity of human brain evolution. Nature 620, 145–153 (2023).
Hamilton, P. J. et al. Cell-type-specific epigenetic editing at the fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology 43, 272–284 (2018).
Lardner, C. K. et al. Gene-targeted, CREB-mediated induction of δfosb controls distinct downstream transcriptional patterns within D1 and D2 medium spiny neurons. Biol. Psychiatry 90, 540–549 (2021).
Sase, A. S. et al. Sex-specific regulation of fear memory by targeted epigenetic editing of Cdk5. Biol. Psychiatry 85, 623–634 (2019).
Heller, E. A. et al. Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J. Neurosci. 36, 4690–4697 (2016).
Bohnsack, J. P. et al. Targeted epigenomic editing ameliorates adult anxiety and excessive drinking after adolescent alcohol exposure. Sci. Adv. 8, eabn2748 (2022).
Himeda, C. L., Jones, T. I. & Jones, P. L. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol. Ther. Methods Clin. Dev. 20, 298–311 (2021).
Wan, L. et al. CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a tauopathy mouse model. Neurobiol. Dis. 206, 106826 (2025).
Xu, S.-J. et al. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 109, 2943–2966.e8 (2021).
Park, M. et al. Targeted demethylation of cathepsin D via epigenome editing rescues pathology in Alzheimer’s disease mouse model. Theranostics 15, 428–438 (2025).
Park, H. et al. CRISPR/dCas9-Dnmt3a-mediated targeted DNA methylation of APP rescues brain pathology in a mouse model of Alzheimer’s disease. Transl. Neurodegener. 11, 41 (2022).
Han, J. et al. Engineered exosomes with a photoinducible protein delivery system enable CRISPR-Cas-based epigenome editing in Alzheimer’s disease. Sci. Transl. Med. 16, eadi4830 (2024).
Kong, W. et al. Ultrasound-assisted CRISPRi-exosome for epigenetic modification of α-synuclein gene in a mouse model of Parkinson’s disease. ACS Nano 18, 7837–7851 (2024).
Stein, G. et al. Transthyretin orchestrates vitamin B12-induced stress resilience. Biol. Psychiatry 97, 54–63 (2025).
Xu, X. et al. High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat. Commun. 9, 3509 (2018).
Hanzawa, N. et al. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing. Sci. Rep. 10, 5181 (2020).
Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).
Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).
Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).
Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20, 173–174 (2021).
Wilson, J. M. & Flotte, T. R. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum. Gene Ther. 31, 695–696 (2020).
Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).
Palaz, F. Death after high-dose rAAV9 gene therapy in a patient with duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 2210–2211 (2023).
An, Y. et al. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci. Rep. 13, 16763 (2023).
Kraus, C. & Sontheimer, E. J. Applications of anti-CRISPR proteins in genome editing and biotechnology. J. Mol. Biol. 435, 168120 (2023).
Riedmayr, L. M. et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat. Commun. 14, 6578 (2023).
Fan, P. et al. Targeted mutagenesis in mice via an engineered AsCas12f1 system. Cell. Mol. Life Sci. 81, 63 (2024).
Gonzalez, T. J. et al. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat. Commun. 13, 5947 (2022).
Ibraheim, R. et al. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat. Commun. 12, 6267 (2021).
Ling, S. et al. Lentiviral delivery of co-packaged Cas9 mRNA and a VEGFA-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 5, 144–156 (2021).
Sun, Z., Kantor, B. & Chiba-Falek, O. Neuronal-type-specific epigenome editing to decrease SNCA expression: implications for precision medicine in synucleinopathies. Mol. Ther. Nucleic Acids 35, 102084 (2024).
Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).
Sahel, D. K. et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv. Sci. 10, e2207512 (2023).
Deng, P. et al. An in vivo cell-based delivery platform for zinc finger artificial transcription factors in pre-clinical animal models. Front. Mol. Neurosci. 14, 789913 (2021).
Ahmadi, S. E. et al. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther. 30, 936–954 (2023).
Zhong, C. et al. Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration. Acta Biomater. 173, 283–297 (2024).
Xu, D. et al. Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins. Nat. Commun. 16, 7948 (2025).
Woodward, E. A. et al. Protocol for delivery of CRISPR/dCas9 systems for epigenetic editing into solid tumors using lipid nanoparticles encapsulating RNA. Methods Mol. Biol. 2842, 267–287 (2024).
Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).
Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).
Zhang, H. et al. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res. 52, 977–997 (2024).
Collins, M. et al. A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology. Nat. Commun. 15, 6563 (2024).
Santaló, J. & Berdasco, M. Ethical implications of epigenetics in the era of personalized medicine. Clin. Epigenetics 14, 44 (2022).
Dalpé, G. et al. Defusing the legal and ethical minefield of epigenetic applications in the military, defense, and security context. J. Law Biosci. 10, lsad034 (2023).
Chiapperino, L. & Paneni, F. Why epigenetics is (not) a biosocial science and why that matters. Clin. Epigenetics 14, 144 (2022).
Chiapperino, L., Habets, M. & Paneni, F. Epigenetic editing in cardiovascular medicine: moving beyond the hype. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-025-01143-0 (2025).
Alex, K. & Winkler, E. C. Comparative ethical evaluation of epigenome editing and genome editing in medicine: first steps and future directions. J. Med. Ethics 50, 398–406 (2024).
Takahashi, Y. et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 186, 715–731.e19 (2023).
Sapozhnikov, D. M. & Szyf, M. Genetic confounds of transgenerational epigenetic inheritance in mice. Epigenetics 19, 2318519 (2024).
Habets, M. G. J. L., Rots, M. G. & Chiapperino, L. Meeting report on the round table discussions ‘epigenetics and society’ CLEPIC24. Epigenetics Commun. 5, 4 (2025).
Benedetti, V. et al. A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. Sci. Adv. 8, eabn3986 (2022).
Kim, S. H. & Haynes, K. A. Reader-effectors as actuators of epigenome editing. Methods Mol. Biol. 2842, 103–127 (2024).
Davies, K., Philippidis, A. & Barrangou, R. Five years of progress in CRISPR clinical trials (2019-2024). CRISPR J. 7, 227–230 (2024).
Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 28, 1136–1147.e5 (2021).
Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA 118, e2004832117 (2021).
Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
Huang, M. E. et al. C-to-G editing generates double-strand breaks causing deletion, transversion and translocation. Nat. Cell Biol. 26, 294–304 (2024).
Riedmayr, L. M. et al. dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nat. Protoc. 17, 781–818 (2022).
Edenhofer, F. C. et al. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 27, 110090 (2024).
Butterfield, G. L., Reisman, S. J., Iglesias, N. & Gersbach, C. A. Gene regulation technologies for gene and cell therapy. Mol. Ther. 33, 2104–2122 (2025).
Davies, R. et al. CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol. 22, 47 (2021).
Liu, P. Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).
Rebar, E. J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002).
Eisenstein, M. Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat. Biotechnol. 30, 121–123 (2012).
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
Swain, T. et al. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res. 52, 474–491 (2024).
Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).
Tycko, J. et al. High-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035.e16 (2020).
DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).
Ludwig, C. H. et al. High-throughput discovery and characterization of viral transcriptional effectors in human cells. Cell Syst. 14, 482–500.e8 (2023).
Mahata, B. et al. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat. Methods 20, 1716–1728 (2023).
Li, E. & Kampmann, M. Toward a CRISPR understanding of gene function in human brain development. Cell Stem Cell 30, 1561–1562 (2023).
Mussolino, C. et al. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med. 3, 118–128 (2011).
Tak, Y. E. et al. Augmenting and directing long-range CRISPR-mediated activation in human cells. Nat. Methods 18, 1075–1081 (2021).
Wang, G. et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat. Immunol. 20, 1494–1505 (2019).
David, M. et al. Enhanced anti-tumor activity by zinc finger repressor-driven epigenetic silencing of immune checkpoints and TGFBR2 in CAR-T cells and TILs. Mol. Ther. Oncol. 33, 200989 (2025).
Cui, X. et al. Dual CRISPR interference and activation for targeted reactivation of X-linked endogenous FOXP3 in human breast cancer cells. Mol. Cancer 21, 38 (2022).
Kim, J. et al. Transcriptional activation of endogenous Oct4 via the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria syndrome in mice. Aging Cell 22, e13825 (2023).
Tanenhaus, A. et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum. Gene Ther. 33, 579–597 (2022).
Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).
Morato Torres, C. A. Robust nuclease-dead S. aureus dCas9-mediated alpha-synuclein knockdown in substantia nigra in a humanized mouse model of Parkinson’s disease. Preprint at bioRxiv https://doi.org/10.1101/2023.09.05.556425 (2023).
