Evaluation of antibacterial and cytotoxic effects of silver oxide nanoparticles synthesized from Psidium Guajava

evaluation-of-antibacterial-and-cytotoxic-effects-of-silver-oxide-nanoparticles-synthesized-from-psidium-guajava
Evaluation of antibacterial and cytotoxic effects of silver oxide nanoparticles synthesized from Psidium Guajava

References

  1. Khan, Y. et al. Classification, synthetic, and characterization approaches to Nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts 12, 1386 (2022).

    Google Scholar 

  2. Ying, S. et al. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 (2022).

    Google Scholar 

  3. Salem, S. S. A mini review on green nanotechnology and its development in biological effects. Arch. Microbiol. 205 https://doi.org/10.1007/s00203-023-03467-2 (2023).

  4. Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 199, 344–370. https://doi.org/10.1007/s12011-020-02138-3 (2021).

    Google Scholar 

  5. Bhavi, S. M. et al. Biogenic silver nanoparticles from Simarouba glauca DC leaf extract: Synthesis, characterization, and anticancer efficacy in lung cancer cells with protective effects in caenorhabditis elegans. Nano TransMed. 3, 100052. https://doi.org/10.1016/j.ntm.2024.100052 (2024).

    Google Scholar 

  6. Bhavi, S. M. et al. Green synthesis, characterization, antidiabetic, antioxidant and antibacterial applications of silver nanoparticles from syzygium caryophyllatum (L.) Alston leaves. Process Biochem. 145, 89–103. https://doi.org/10.1016/j.procbio.2024.06.017 (2024).

    Google Scholar 

  7. Bhavi, S. et al. Potential antidiabetic properties of syzygium cumini (L.) Skeels leaf extract-mediated silver nanoparticles. Austin J. Anal. Pharm. Chem. 11, 1168 (2024).

    Google Scholar 

  8. Said, A., Abu-Elghait, M., Atta, H. M. & Salem, S. S. Antibacterial activity of green synthesized silver nanoparticles using lawsonia inermis against common pathogens from urinary tract infection. Appl. Biochem. Biotechnol. 196, 85–98. https://doi.org/10.1007/s12010-023-04482-1 (2024).

    Google Scholar 

  9. Singh, S. R. et al. Eco-synthesized silver nanoparticles from curcuma longa leaves: Phytochemical and biomedical applications. Next Nanatechnol. 8, 100249. https://doi.org/10.1016/j.nxnano.2025.100249 (2025).

    Google Scholar 

  10. Kirubakaran, D. et al. A comprehensive review on the green synthesis of nanoparticles: Advancements in biomedical and environmental applications. Biomed. Mater. Devices. 4, 388–413. https://doi.org/10.1007/s44174-025-00295-4 (2026).

    Google Scholar 

  11. Singh, S. R. et al. The effect of clitoria Ternatea L. flowers-derived silver nanoparticles on A549 and L-132 human cell lines and their antibacterial efficacy in caenorhabditis elegans in vivo. Hybrid. Adv. 8, 100359. https://doi.org/10.1016/j.hybadv.2024.100359 (2025).

    Google Scholar 

  12. Soliman, M. K. Y., Hashem, A. H., Al-Askar, A. A., AbdElgayed, G. & Salem, S. S. Green synthesis of silver nanoparticles from bauhinia variegata and their biological applications. Green. Process. Synth. 13 https://doi.org/10.1515/gps-2024-0099 (2024).

  13. Redjili, S. et al. Green synthesis of silver oxide nanoparticles: Eco-friendly approach for sustainable solutions. Ind. Crops Prod. 223, 120168. https://doi.org/10.1016/j.indcrop.2024.120168 (2025).

    Google Scholar 

  14. Sharma, A. & Kaur, A. Catharanthus roseus leaf-based green synthesis of silver oxide nanoparticles: Characterization, phytochemicals screening and antimicrobial activity. Microbe 8, 100469. https://doi.org/10.1016/j.microb.2025.100469 (2025).

    Google Scholar 

  15. Iqbal, S. et al. Application of silver oxide nanoparticles for the treatment of cancer. J. Mol. Struct. 1189, 203–209. https://doi.org/10.1016/j.molstruc.2019.04.041 (2019).

    Google Scholar 

  16. Islam, M. J. et al. Psidium Guajava leaf extract mediated green synthesis of silver nanoparticles and its application in antibacterial coatings. RSC Adv. 13, 19164–19172 (2023).

    Google Scholar 

  17. Nagaraja, S. et al. Green synthesis and characterization of silver nanoparticles of psidium Guajava leaf extract and evaluation for its antidiabetic activity. Molecules 27, 4336 (2022).

    Google Scholar 

  18. Abuthahir, A. K. et al. Orange fruit Peel Biowaste mediated green synthesis of CaO NPs and their antibacterial, radical scavenging activity and ecotoxicity. Bioorg. Chem. 164, 108835. https://doi.org/10.1016/j.bioorg.2025.108835 (2025).

    Google Scholar 

  19. Malaikozhundan, B. et al. Enhanced bactericidal, antibiofilm and antioxidative response of lawsonia inermis leaf extract synthesized ZnO NPs loaded with commercial antibiotic. Bioprocess Biosyst. Eng. 47, 1241–1257 (2024).

    Google Scholar 

  20. Vinothini, P., Malaikozhundan, B., Krishnamoorthi, R., Senthamarai, M. D. & Shanthi, D. Potential Inhibition of biofilm forming bacteria and fungi and DPPH free radicals using tamarindus indica fruit extract assisted iron oxide nanoparticle. Inorg. Chem. Commun. 156, 111206 (2023).

    Google Scholar 

  21.  Yousef, A., Salem, S.S., Ragab, A. et al. Mentha spicata-mediated silver nanoparticles for combating Streptococcus mutans and oral cancer cells. Sci Rep 15, 38474 https://doi.org/10.1038/s41598-025-23852-9 (2025).

    Google Scholar 

  22. Malaikozhundan, B., Krishnamoorthi, R., Vinodhini, J., Nambi, K. S. N. & Palanisamy, S. Multifunctional iron oxide nanoparticles using carica Papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes. Inorg. Chem. Commun. 144, 109843. https://doi.org/10.1016/j.inoche.2022.109843 (2022).

    Google Scholar 

  23. Senthamarai, M. D. & Malaikozhundan, B. Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle Marmelos (L.)-Antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Mater. Today Commun. 30, 103228 (2022).

    Google Scholar 

  24. Malaikozhundan, B. et al. High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst. Eng. 43, 1533–1547. https://doi.org/10.1007/s00449-020-02346-0 (2020).

    Google Scholar 

  25. Malaikozhundan, B. et al. Two potential uses for silver nanoparticles coated with solanum nigrum unripe fruit extract: biofilm Inhibition and photodegradation of dye effluent. Microb. Pathog. 111, 316–324. https://doi.org/10.1016/j.micpath.2017.08.039 (2017).

    Google Scholar 

  26. Malaikozhundan, B. et al. Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb. Pathog. 104, 268–277. https://doi.org/10.1016/j.micpath.2017.01.029 (2017).

    Google Scholar 

  27. Maheshwaran, G. et al. Green synthesis of silver oxide nanoparticles using zephyranthes rosea flower extract and evaluation of biological activities. J. Environ. Chem. Eng. 8, 104137. https://doi.org/10.1016/j.jece.2020.104137 (2020).

    Google Scholar 

  28. Manikandan, V. et al. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech. 7, 72. https://doi.org/10.1007/s13205-017-0670-4 (2017).

    Google Scholar 

  29. Parez, C. P. & Bezerque, M. P. An antibiotic assay by the agar-well diffusion method: Acta. Biol. Med. Exp. 15, 113–115 (1990).

    Google Scholar 

  30. Lopez-Carrizales, M. et al. Green, novel, and one-step synthesis of silver oxide nanoparticles: Antimicrobial activity, synergism with antibiotics, and cytotoxic studies. New J. Chem. 46, 17841–17853. https://doi.org/10.1039/D2NJ02902B (2022).

    Google Scholar 

  31. Rasool, A. & Mahmood, I. H. Evaluation of cytotoxic effect of Metformin on a variety of cancer cell lines. Clin Schizophr Relat. Psychoses 15 (2021).

  32. Saka, A. et al. Investigating antibacterial activity of biosynthesized silver oxide nanoparticles using Phragmanthera macrosolen L. leaf extract. Sci. Rep. 14, 26850. https://doi.org/10.1038/s41598-024-75254-y (2024).

    Google Scholar 

  33. Rashmi, B. N. et al. Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 111, 107580. https://doi.org/10.1016/j.inoche.2019.107580 (2020).

    Google Scholar 

  34. Li, R. et al. Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J. Photochem. Photobiol. B. 199, 111593. https://doi.org/10.1016/j.jphotobiol.2019.111593 (2019).

    Google Scholar 

  35. Fayyadh, A. A. & Jaduaa Alzubaidy, M. H. Green-synthesis of Ag2O nanoparticles for antimicrobial assays. J. Mech. Behav. Mater. 30, 228–236 (2021).

    Google Scholar 

  36. Mani, M. et al. Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ. Res. 202, 111627. https://doi.org/10.1016/j.envres.2021.111627 (2021).

    Google Scholar 

  37. Velsankar, K., Parvathy, G., Sankaranarayanan, K., Mohandoss, S. & Sudhahar, S. Green synthesis of silver oxide nanoparticles using panicum miliaceum grains extract for biological applications. Adv. Powder Technol. 33, 103645. https://doi.org/10.1016/j.apt.2022.103645 (2022).

    Google Scholar 

  38. Patel, H. & Joshi, J. Green and chemical approach for synthesis of Ag2O nanoparticles and their antimicrobial activity. J. Solgel Sci. Technol. 105, 814–826. https://doi.org/10.1007/s10971-023-06036-7 (2023).

    Google Scholar 

  39. Kokila, N. R. et al. Thunbergia Mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation. J. Mol. Struct. 1255, 132455. https://doi.org/10.1016/j.molstruc.2022.132455 (2022).

    Google Scholar 

  40. Sujatha, V. et al. Biomimetic formation of silver oxide nanoparticles through Diospyros Montana bark extract: its application in dye degradation, antibacterial and anticancer effect in human hepatocellular carcinoma cells. J. King Saud Univ. Sci. 35, 102563. https://doi.org/10.1016/j.jksus.2023.102563 (2023).

    Google Scholar 

  41. Al-Rajhi, A. M. H., Salem, S. S., Alharbi, A. A. & Abdelghany, T. M. Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arab. J. Chem. 15, 103927. https://doi.org/10.1016/j.arabjc.2022.103927 (2022).

    Google Scholar 

  42. Behera, A. & Awasthi, S. Anticarcinogenic potentials of silver oxide nanoparticles synthesized from lagerstroemia indica. Int. J. Nanosci. 20, 2150060 (2021).

    Google Scholar 

  43. Gul, F. et al. Ecofriendly synthesis characterization and biological activities of Eruca sativa mediated silver oxide nanoparticles. Sci. Rep. 15, 13466. https://doi.org/10.1038/s41598-025-87670-9 (2025).

    Google Scholar 

  44. Alruhaili, M.H., Selim, S., Adly, E. et al. Green synthesis of silver nanoparticles from Bacillus subtilis-mediated feather hydrolysate: antimicrobial, larvicidal against culex pipiens, and anticancer activities. Bioresour. Bioprocess. 12, 116. https://doi.org/10.1186/s40643-025-00952-y (2025).

Download references