References
-
Qin, S. et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 7, 199. https://doi.org/10.1038/s41392-022-01056-1 (2022).
-
Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50. https://doi.org/10.1016/j.mib.2020.02.003 (2020).
-
Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C. & Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10, 3 (2021).
-
Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342. https://doi.org/10.1038/s41579-020-00477-5 (2021).
-
World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. (CC BY-NC-SA 3.0 IGO, 2024).
-
de Sousa, T. et al. Pseudomonas aeruginosa: one health approach to Deciphering hidden relationships in Northern Portugal. J. Appl. Microbiol. 136 https://doi.org/10.1093/jambio/lxaf037 (2025).
-
Broncano-Lavado, A., Santamaría-Corral, G. & Esteban, J. García-Quintanilla, M. Advances in bacteriophage therapy against relevant MultiDrug-Resistant pathogens. Antibiotics (Basel). https://doi.org/10.3390/antibiotics10060672 (2021).
-
Chanishvili, N. Bacteriophages as therapeutic and prophylactic means: summary of the Soviet and post Soviet experiences. Curr. Drug Deliv. 13, 309–323. https://doi.org/10.2174/156720181303160520193946 (2016).
-
Alves, D. R. et al. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb. Biotechnol. 9, 61–74. https://doi.org/10.1111/1751-7915.12316 (2016).
-
Knecht, L. E., Veljkovic, M. & Fieseler, L. Diversity and function of phage encoded depolymerases. Front. Microbiol. 10, 2949. https://doi.org/10.3389/fmicb.2019.02949 (2019).
-
Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14, 2273567. https://doi.org/10.1080/21505594.2023.2273567 (2023).
-
Vilas Boas, D. et al. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32, 179–190. https://doi.org/10.1080/08927014.2015.1131821 (2016).
-
Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota-host interactions. Nature 553, 427–436. https://doi.org/10.1038/nature25177 (2018).
-
Kengmo Tchoupa, A., Kretschmer, D., Schittek, B. & Peschel, A. The epidermal lipid barrier in microbiome–skin interaction. Trends Microbiol. 31, 723–734. https://doi.org/10.1016/j.tim.2023.01.009 (2023).
-
Gonzalez Manuel, R. et al. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. mSphere. https://doi.org/10.1128/msphere.00111-15 (2016).
-
Gonzalez, M. R. et al. Transcriptome analysis of Pseudomonas aeruginosa cultured in human burn wound exudates. Front. Cell. Infect. Microbiol. 8, 39. https://doi.org/10.3389/fcimb.2018.00039 (2018).
-
Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103, 8487–8492. https://doi.org/10.1073/pnas.0602138103 (2006).
-
Mukherjee, P., Roy, S., Ghosh, D. & Nandi, S. K. Role of animal models in biomedical research: a review. Lab. Anim. Res. 38, 18. https://doi.org/10.1186/s42826-022-00128-1 (2022).
-
Frosini, S. M., Bond, R., Loeffler, A. & Larner, J. Opportunities for topical antimicrobial therapy: permeation of canine skin by fusidic acid. BMC Vet. Res. 13, 345. https://doi.org/10.1186/s12917-017-1270-6 (2017).
-
Andersson, M. Å., Madsen, L. B., Schmidtchen, A. & Puthia, M. Development of an experimental ex vivo wound model to evaluate antimicrobial efficacy of topical formulations. Int. J. Mol. Sci. 22, 5045 (2021).
-
Schaudinn, C. et al. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. PLOS ONE. 12, e0186946. https://doi.org/10.1371/journal.pone.0186946 (2017).
-
Alves, D. R. et al. Development of a High-Throughput ex-Vivo burn wound model using Porcine Skin, and its application to evaluate new approaches to control wound infection. Front. Cell. Infect. Microbiol. 8, 196. https://doi.org/10.3389/fcimb.2018.00196 (2018).
-
Milho, C., Andrade, M., Vilas Boas, D., Alves, D. & Sillankorva, S. Antimicrobial assessment of phage therapy using a Porcine model of biofilm infection. Int. J. Pharm. 557, 112–123. https://doi.org/10.1016/j.ijpharm.2018.12.004 (2019).
-
Vieira, A. et al. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3241–3249. https://doi.org/10.1007/s10096-012-1691-x (2012).
-
Nang, S. C. et al. Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation. Clin. Microbiol. Infect. 29, 702–709. https://doi.org/10.1016/j.cmi.2023.01.021 (2023).
-
Bürkle, M. et al. Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa. Isme J. 19 https://doi.org/10.1093/ismejo/wraf065 (2025).
-
Guihard, G., Bénédetti, H., Besnard, M. & Letellier, L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J. Biol. Chem. 268, 17775–17780 (1993).
-
Dalponte, A. et al. Characterization and purification of Pseudomonas aeruginosa phages for the treatment of canine infections. BMC Microbiol. 25, 289. https://doi.org/10.1186/s12866-025-04005-4 (2025).
-
Chen, H. et al. A Klebsiella-phage cocktail to broaden the host range and delay bacteriophage resistance both in vitro and in vivo. NPJ Biofilms Microbiomes. 10, 127. https://doi.org/10.1038/s41522-024-00603-8 (2024).
-
Yang, Y. et al. Development of a bacteriophage cocktail to constrain the emergence of Phage-Resistant Pseudomonas aeruginosa. Front. Microbiol. 11, 327. https://doi.org/10.3389/fmicb.2020.00327 (2020).
-
Pirnay, J. P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453. https://doi.org/10.1038/s41564-024-01705-x (2024).
-
Elfadadny, A. et al. Bacteriophage therapy in clinical practice: case studies of Pseudomonas aeruginosa infections. J. Chemother. 1–12. https://doi.org/10.1080/1120009x.2025.2547147 (2025).
-
Azeredo, J. et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351. https://doi.org/10.1080/1040841x.2016.1208146 (2017).
-
Rasamiravaka, T., Labtani, Q., Duez, P. & El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed. Res. Int. 2015 (759348). https://doi.org/10.1155/2015/759348 (2015).
-
David, A. et al. Pseudomonas aeruginosa biofilm lifecycle: involvement of mechanical constraints and timeline of matrix production. Antibiot. (Basel). 13. https://doi.org/10.3390/antibiotics13080688 (2024).
-
Molendijk Michèle, M. et al. Bacteriophage therapy reduces Staphylococcus aureus in a Porcine and human ex vivo burn wound infection model. Antimicrob. Agents Chemother. 68, e00650–e00624. https://doi.org/10.1128/aac.00650-24 (2024).
-
Oliveira, V. C. et al. Identification and characterization of new bacteriophages to control Multidrug-Resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front. Microbiol. 11, 580779. https://doi.org/10.3389/fmicb.2020.580779 (2020).
-
Namonyo, S., Weynberg, K. D., Guo, J. & Carvalho, G. The effectiveness and role of phages in the disruption and inactivation of clinical P. aeruginosa biofilms. Environ. Res. 234, 116586. https://doi.org/10.1016/j.envres.2023.116586 (2023).
-
Zurabov, F., Glazunov, E., Kochetova, T., Uskevich, V. & Popova, V. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci. Rep. 13, 15188. https://doi.org/10.1038/s41598-023-42505-3 (2023).
-
Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e34. https://doi.org/10.1016/j.chom.2017.06.018 (2017).
-
Malik, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249, 100–133. https://doi.org/10.1016/j.cis.2017.05.014 (2017).
-
Engeman, E. et al. Synergistic killing and re-sensitization of Pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals (Basel). 14. https://doi.org/10.3390/ph14030184 (2021).
-
Gu Liu, C. et al. Phage-Antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 11. https://doi.org/10.1128/mBio.01462-20 (2020).
-
Holger, D. J. et al. Bacteriophage-antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa: in vitro synergy testing. J. Appl. Microbiol. 133, 1636–1649. https://doi.org/10.1111/jam.15647 (2022).
-
Jerzsele, Á. & Pásztiné-Gere, E. Evaluating synergy between Marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Acta Microbiol. Immunol. Hung. 62, 45–55. https://doi.org/10.1556/AMicr.62.2015.1.4 (2015).
-
Hartmann, R. et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat. Microbiol. 6, 151–156. https://doi.org/10.1038/s41564-020-00817-4 (2021).
-
Kopenhagen, A. et al. Streptococcus pneumoniae affects endothelial cell migration in microfluidic circulation. Front. Microbiol. 13 https://doi.org/10.3389/fmicb.2022.852036 (2022).
