Evaluation of phenolic profile and multi-biological activities of Lepista glaucocana extracts optimized by ANN-GA and RSM models

evaluation-of-phenolic-profile-and-multi-biological-activities-of-lepista-glaucocana-extracts-optimized-by-ann-ga-and-rsm-models
Evaluation of phenolic profile and multi-biological activities of Lepista glaucocana extracts optimized by ANN-GA and RSM models

References

  1. Panda, S. K., Sahoo, G., Swain, S. S. & Luyten, W. Anticancer activities of mushrooms: a neglected source for drug discovery. Pharmaceuticals 15, 176 (2022).

    Google Scholar 

  2. Sevindik, M., Bal, C., Eraslan, E. C., Uysal, I. & Mohammed, F. S. Medicinal mushrooms: a comprehensive study on their antiviral potential. Prospects Pharm. Sci. 21, 42–56 (2023).

    Google Scholar 

  3. Shaffique, S. et al. Current knowledge of medicinal mushrooms related to anti-oxidant properties. Sustainability 13, 7948 (2021).

    Google Scholar 

  4. Gariboldi, M. B. et al. Anti-cancer potential of edible/medicinal mushrooms in breast cancer. Int. J. Mol. Sci. 24, 10120 (2023).

    Google Scholar 

  5. Elhusseiny, S. M. et al. Immunomodulatory activity of extracts from five edible basidiomycetes mushrooms in Wistar albino rats. Sci. Rep. 12, 12423 (2022).

    Google Scholar 

  6. Du, B. et al. Optimization extraction and antioxidant activity of crude polysaccharide from chestnut mushroom (Agrocybe aegerita) by accelerated solvent extraction combined with response surface methodology (ASE-RSM). Molecules 27, 2380 (2022).

    Google Scholar 

  7. Gürgen, A. & Sevindik, M. Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. J. Food Process. Preserv. 46, e16949 (2022).

    Google Scholar 

  8. Latif, A. et al. Enhancing polyphenol extraction from white button mushrooms using microwave-assisted extraction: A response surface methodology optimization approach. Microchem. J. 203, 110876 (2024).

    Google Scholar 

  9. Bigelow, H. E. & Smith, A. H. The status of Lepista—a new section of Clitocybe. Brittonia 21, 144–177 (1969).

    Google Scholar 

  10. Wang, S. et al. Evaluation of five regions as DNA barcodes for identification of Lepista species (Tricholomataceae, Basidiomycota) from China. PeerJ 7, e7307 (2019).

    Google Scholar 

  11. Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37, 277–285 (2004).

    Google Scholar 

  12. Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38, 1103–1111 (2005).

    Google Scholar 

  13. Gürgen, A. Bioactivity of Juglans regia kernel extracts optimized using response surface method and artificial neural Network-Genetic algorithm integration. Sci. Rep. 15, 8981 (2025).

    Google Scholar 

  14. Koçer, O. Determination of optimum extract conditions and evaluation of biological activity potential of Salvia cilicica Boiss. Sci. Rep. 15, 9277 (2025).

    Google Scholar 

  15. Ellman, G. L., Courtney, K. D., Andres Jr, V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).

    Google Scholar 

  16. Korkmaz, N. Artificial intelligence-assisted optimization of Eichhornia crassipes extracts and evaluation of their biological activities. Sci. Rep. 15, 30234 (2025).

    Google Scholar 

  17. Ünal, O. et al. Optimization of Phellinus hartigii extracts: Biological activities, and phenolic content analysis. BMC Complement. Med. Ther. 25, 113 (2025).

    Google Scholar 

  18. Bristy, A. T. et al. Evaluation of total phenolic content, HPLC analysis, and antioxidant potential of three local varieties of mushroom: A comparative study. International Journal of Food Science 3834936 (2022). (2022).

  19. Zhong, W. et al. Antioxidant and anti-aging activities of mycelial polysaccharides from Lepista sordida. Int. J. Biol. Macromol. 60, 355–359 (2013).

    Google Scholar 

  20. Vaz, J. A. et al. Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem. Toxicol. 48, 2881–2884 (2010).

    Google Scholar 

  21. Bal, C., Sevindik, M., Akgul, H. & Selamoglu, Z. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma J. Eng. Nat. Sci. 37, 1–5 (2019).

    Google Scholar 

  22. Sevindik, M., Gürgen, A., Korkmaz, A. F. & Akata, I. Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling. Molecules 30, 3317 (2025).

    Google Scholar 

  23. Zawadzka, A. et al. Dual functional cholinesterase inhibitors and complexing of aluminum ions of five species of fungi family depended of drying conditions and extraction process-In vitro study. Lwt 154, 112712 (2022).

    Google Scholar 

  24. Mišković, J. et al. Mushroom species Stereum hirsutum as natural source of phenolics and fatty acids as antioxidants and acetylcholinesterase inhibitors. Chem. Biodivers. 18, e2100409 (2021).

    Google Scholar 

  25. Deveci, E., Tel-Çayan, G., Çayan, F., Yılmaz Altınok, B. & Aktaş, S. Chemical characterization, in vitro antioxidant, anti-cancer and enzyme inhibition activities of three edible mushroom species. J. Food Meas. Charact. 17, 5518–5533 (2023).

    Google Scholar 

  26. Felegyi, K. et al. Anticholinesterase and antityrosinase secondary metabolites from the fungus Xylobolus subpileatus. Molecules 29, 213 (2023).

    Google Scholar 

  27. Korkmaz, A. F., Gürgen, A., Krupodorova, T., Sevindik, M. & Akata, I. Artificial intelligence-assisted optimization of extraction enhances the biological activity of Phylloporia ribis. Sci. Rep. 15, 41206 (2025).

    Google Scholar 

  28. Baba, H., Sevindik, M., Gürgen, A., Krupodorova, T. & Akata, I. Pharmacological potential of Russula grata: antioxidant, neuroprotective, and anticancer properties. Studies Fungi 10 (2025).

  29. Wasser, S. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical journal 37 (2014).

  30. Sevindik, M. et al. The Role of Medicinal Mushrooms in Cancer Treatment: Bioactive Compounds and Therapeutic Potential. Int. J. Med. Mushrooms. 27, 1–24 (2025).

    Google Scholar 

  31. Abdelshafy, A. M. et al. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. Nutr. 62, 6204–6224 (2022).

    Google Scholar 

  32. Özmen, A. & Değirmenci, E. H. In vitro anticancer and apoptotic activity of edible mushroom Lepista nuda (Bull.) Cooke on leukemia and breast cancer compared with protocatechuic acid, paclitaxel and doxorubicin. Indian J. Experimental Biology (IJEB). 59, 147–152 (2021).

    Google Scholar 

  33. Miao, S. et al. Lepista sordida polysaccharide induces apoptosis of Hep-2 cancer cells via mitochondrial pathway. Int. J. Biol. Macromol. 61, 97–101 (2013).

    Google Scholar 

  34. Alispahić, A. et al. Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bull. Chem. Technol. Bosnia Herzegovina. 44, 5–8 (2015).

    Google Scholar 

  35. Kakkar, S. & Bais, S. A review on protocatechuic acid and its pharmacological potential. International Scholarly Research Notices 952943 (2014). (2014).

  36. Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. & Kumar, C. S. Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 108, 547–557 (2018).

    Google Scholar 

  37. Şabik, A. E., Mohammed, F. S., Sevindik, M., Uysal, I. & Bal, C. Gallic acid: derivatives and biosynthesis, pharmacological and therapeutic effect, biological activity. Bull. Univ. Agricultural Sci. Veterinary Med. Cluj-Napoca Food Sci. Technol. 81, 18–27 (2024).

    Google Scholar 

  38. Velika, B. & Kron, I. Antioxidant properties of benzoic acid derivatives against superoxide radical. Free radicals Antioxid. 2, 62–67 (2012).

    Google Scholar 

  39. Taofiq, O., González-Paramás, A. M., Barreiro, M. F. & Ferreira, I. C. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 22, 281 (2017).

    Google Scholar 

Download references