Data availability
The genome of Carin-5 bacteriophage is available online under the Genbank accession number PV155638.1.
References
-
Lelchat, F. et al. The marine bacteria Cobetia marina DSMZ 4741 synthesizes an unexpected K-antigen-like exopolysaccharide. Carbohydr. Polym. 124, 347–356. https://doi.org/10.1016/j.carbpol.2015.02.038 (2015).
-
d’Acapito, A. et al. Structural study of the Cobetia marina bacteriophage 1 (Carin-1) by Cryo-EM. J. Virol. 97(4), e00248-e323. https://doi.org/10.1128/jvi.00248-23 (2023).
-
Lelchat, F. et al. Viral degradation of marine bacterial exopolysaccharides. FEMS Microbiol. Ecol. 95(7), fiz79. https://doi.org/10.1093/femsec/fiz079 (2019).
-
Leskinen, K. et al. YerA41, a Yersinia ruckeri bacteriophage: Determination of a non-sequencable DNA bacteriophage genome via RNA-sequencing. Viruses 12(6), 6. https://doi.org/10.3390/v12060620 (2020).
-
Gomez-Raya-Vilanova, M. V. et al. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucl. Acids Res. 50(7), 3985–3997. https://doi.org/10.1093/nar/gkac203 (2022).
-
Kawasaki, T., Endo, H., Ogata, H., Chatchawankanphanich, O. & Yamada, T. The complete genomic sequence of the novel myovirus RP13 infecting Ralstonia solanacearum, the causative agent of bacterial wilt. Arch. Virol. 166(2), 651–654. https://doi.org/10.1007/s00705-020-04893-z (2021).
-
Kropinski, A. M. et al. The sequence of two bacteriophages with hypermodified bases reveals novel phage-host interactions. Viruses 10(5), 5. https://doi.org/10.3390/v10050217 (2018).
-
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
-
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70(1), e102. https://doi.org/10.1002/cpbi.102 (2020).
-
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).
-
Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucl. Acids Res. 44(W1), W54–W57. https://doi.org/10.1093/nar/gkw413 (2016).
-
Olson, R. D. et al. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucl. Acids Res. 51(D1), D678–D689. https://doi.org/10.1093/nar/gkac1003 (2023).
-
Zimmermann, L. et al. A completely reimplemented MPI Bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430(15), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007 (2018).
-
Garneau, J. R. et al. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci. Rep. 11(1), 18319. https://doi.org/10.1038/s41598-021-97867-3 (2021).
-
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10(1), 421. https://doi.org/10.1186/1471-2105-10-421 (2009).
-
Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33(15), 2379–2380. https://doi.org/10.1093/bioinformatics/btx157 (2017).
-
Missoury, S., Lucas-Staat, S., Sieskind, R., & Delarue, M. Structural basis for DNA replication and uracil repair in phage a-family DNA polymerases. bioRxiv. https://doi.org/10.1101/2025.03.26.645540 (2025).
-
Marmurm, J. et al. Unique properties of nucleic acid from bacillus subtilis phage SP-15. Nature. New Biol. 239(90), 68–70. https://doi.org/10.1038/newbio239068a0 (1972).
-
Brandon, C., Gallop, P. M., Marmur, J., Hayashi, H. & Nakanishi, K. Structure of a new pyrimidine from bacillus subtilis phage SP-15 Nucleic acid. Nat. New Biol. 239(90), 70–71. https://doi.org/10.1038/newbio239070a0 (1972).
-
Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: A survey and human epigenome-wide evaluation. Genome Biol. 22(1), 295. https://doi.org/10.1186/s13059-021-02510-z (2021).
-
Lee, Y.-J. et al. Pathways of thymidine hypermodification. Nucleic Acids Res. 50(6), 3001–3017. https://doi.org/10.1093/nar/gkab781 (2022).
Acknowledgements
We thank Laurence Ma of the BIOMICS sequencing facility at the Institut Pasteur for carrying out libraries preparation and Illumina sequencing.
Funding
MD, SM and RS acknowledges financial support CNRS (PEPR MoleculArxiv Grant No. ANR-22-PEXM-0002). MD’s laboratory is also supported by I. Pasteur and CNRS. We thank Laurence Ma from the Biomics Platform, C2RT, Institut Pasteur, Paris, France, supported by France Génomique (ANR-10-INBS-09) and IBISA.
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
This research involves no human or animal subjects.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Sieskind, R., Missoury, S., Bonhomme, F. et al. Exploitation of phage Carin-5’s own DNA polymerase to sequence its T-hypermodified genome. Sci Rep (2025). https://doi.org/10.1038/s41598-025-26930-0
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41598-025-26930-0
