Exploitation of phage Carin-5’s own DNA polymerase to sequence its T-hypermodified genome

exploitation-of-phage-carin-5’s-own-dna-polymerase-to-sequence-its-t-hypermodified-genome
Exploitation of phage Carin-5’s own DNA polymerase to sequence its T-hypermodified genome

Data availability

The genome of Carin-5 bacteriophage is available online under the Genbank accession number PV155638.1.

References

  1. Lelchat, F. et al. The marine bacteria Cobetia marina DSMZ 4741 synthesizes an unexpected K-antigen-like exopolysaccharide. Carbohydr. Polym. 124, 347–356. https://doi.org/10.1016/j.carbpol.2015.02.038 (2015).

    Google Scholar 

  2. d’Acapito, A. et al. Structural study of the Cobetia marina bacteriophage 1 (Carin-1) by Cryo-EM. J. Virol. 97(4), e00248-e323. https://doi.org/10.1128/jvi.00248-23 (2023).

    Google Scholar 

  3. Lelchat, F. et al. Viral degradation of marine bacterial exopolysaccharides. FEMS Microbiol. Ecol. 95(7), fiz79. https://doi.org/10.1093/femsec/fiz079 (2019).

    Google Scholar 

  4. Leskinen, K. et al. YerA41, a Yersinia ruckeri bacteriophage: Determination of a non-sequencable DNA bacteriophage genome via RNA-sequencing. Viruses 12(6), 6. https://doi.org/10.3390/v12060620 (2020).

    Google Scholar 

  5. Gomez-Raya-Vilanova, M. V. et al. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucl. Acids Res. 50(7), 3985–3997. https://doi.org/10.1093/nar/gkac203 (2022).

    Google Scholar 

  6. Kawasaki, T., Endo, H., Ogata, H., Chatchawankanphanich, O. & Yamada, T. The complete genomic sequence of the novel myovirus RP13 infecting Ralstonia solanacearum, the causative agent of bacterial wilt. Arch. Virol. 166(2), 651–654. https://doi.org/10.1007/s00705-020-04893-z (2021).

    Google Scholar 

  7. Kropinski, A. M. et al. The sequence of two bacteriophages with hypermodified bases reveals novel phage-host interactions. Viruses 10(5), 5. https://doi.org/10.3390/v10050217 (2018).

    Google Scholar 

  8. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).

    Google Scholar 

  9. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70(1), e102. https://doi.org/10.1002/cpbi.102 (2020).

    Google Scholar 

  10. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).

    Google Scholar 

  11. Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucl. Acids Res. 44(W1), W54–W57. https://doi.org/10.1093/nar/gkw413 (2016).

    Google Scholar 

  12. Olson, R. D. et al. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucl. Acids Res. 51(D1), D678–D689. https://doi.org/10.1093/nar/gkac1003 (2023).

    Google Scholar 

  13. Zimmermann, L. et al. A completely reimplemented MPI Bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430(15), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007 (2018).

    Google Scholar 

  14. Garneau, J. R. et al. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci. Rep. 11(1), 18319. https://doi.org/10.1038/s41598-021-97867-3 (2021).

    Google Scholar 

  15. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10(1), 421. https://doi.org/10.1186/1471-2105-10-421 (2009).

    Google Scholar 

  16. Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33(15), 2379–2380. https://doi.org/10.1093/bioinformatics/btx157 (2017).

    Google Scholar 

  17. Missoury, S., Lucas-Staat, S., Sieskind, R., & Delarue, M. Structural basis for DNA replication and uracil repair in phage a-family DNA polymerases. bioRxiv. https://doi.org/10.1101/2025.03.26.645540 (2025).

  18. Marmurm, J. et al. Unique properties of nucleic acid from bacillus subtilis phage SP-15. Nature. New Biol. 239(90), 68–70. https://doi.org/10.1038/newbio239068a0 (1972).

    Google Scholar 

  19. Brandon, C., Gallop, P. M., Marmur, J., Hayashi, H. & Nakanishi, K. Structure of a new pyrimidine from bacillus subtilis phage SP-15 Nucleic acid. Nat. New Biol. 239(90), 70–71. https://doi.org/10.1038/newbio239070a0 (1972).

    Google Scholar 

  20. Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: A survey and human epigenome-wide evaluation. Genome Biol. 22(1), 295. https://doi.org/10.1186/s13059-021-02510-z (2021).

    Google Scholar 

  21. Lee, Y.-J. et al. Pathways of thymidine hypermodification. Nucleic Acids Res. 50(6), 3001–3017. https://doi.org/10.1093/nar/gkab781 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank Laurence Ma of the BIOMICS sequencing facility at the Institut Pasteur for carrying out libraries preparation and Illumina sequencing.

Funding

MD, SM and RS acknowledges financial support CNRS (PEPR MoleculArxiv Grant No. ANR-22-PEXM-0002). MD’s laboratory is also supported by I. Pasteur and CNRS. We thank Laurence Ma from the Biomics Platform, C2RT, Institut Pasteur, Paris, France, supported by France Génomique (ANR-10-INBS-09) and IBISA.

Author information

Authors and Affiliations

  1. Institut Pasteur, Université Paris-Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75724, Paris, France

    Rémi Sieskind, Sophia Missoury, Soizick Lucas-Staat & Marc Delarue

  2. Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unit of Epigenetic Chemical Biology, 75724, Paris, France

    Frédéric Bonhomme

  3. Sorbonne Université, CNRS, Adaptation Et Diversité en Milieu Marin, AD2M, 29680, Roscoff, France

    Pauline Nogaret & Anne-Claire Baudoux

  4. Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France

    Marc Monot

  5. Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland

    Mikael Skurnik

Authors

  1. Rémi Sieskind
  2. Sophia Missoury
  3. Frédéric Bonhomme
  4. Pauline Nogaret
  5. Soizick Lucas-Staat
  6. Marc Monot
  7. Mikael Skurnik
  8. Anne-Claire Baudoux
  9. Marc Delarue

Contributions

PN & ACB extracted and purified the phage Carin-5 genomic DNA. MS purified phage YerA41 genomic DNA and helped extensively with the writing of the manuscript. FB performed and analyzed the mass spectrometry experiments. MM supervised the phage sequencing experiments. RS & SM reconstructed the genome, produced and purified the DNA polymerase and performed functional tests. SLS performed DNA replication fidelity assays. MD, SM & RS designed the study. MD supervised the entire study. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Marc Delarue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This research involves no human or animal subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieskind, R., Missoury, S., Bonhomme, F. et al. Exploitation of phage Carin-5’s own DNA polymerase to sequence its T-hypermodified genome. Sci Rep (2025). https://doi.org/10.1038/s41598-025-26930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-26930-0