References
-
Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin Microbiome. Nat. Rev. Microbiol. 16, 143 (2018).
-
Dandona, R. et al. Mortality due to road injuries in the States of india: The global burden of disease study 1990–2017. Lancet Public. Health. 5, e86 (2020).
-
Graves, N., Phillips, C. J. & Harding, K. A narrative review of the epidemiology and economics of chronic wounds. Br. J. Dermatol. 187, 141 (2022).
-
Rezvani Ghomi, E., Khalili, S., Nouri Khorasani, S., Esmaeely Neisiany, R. & Ramakrishna, S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 136, 47738 (2019).
-
Bryson, A. L. & Doern, C. D. Wound cultures. In Clinical microbiology procedures handbook (eds. Leber, A. L. & Burnham, C. A.) 5th ed., Aerobic Bacteriology, Chap. 3.12 (John Wiley & Sons, Hoboken, NJ, (2023).
-
Ahovan, Z. A. et al. Antibacterial smart hydrogels: New hope for infectious wound management. Mater. Today Bio. 17, 100499 (2022).
-
Batran, R. Z. et al. Synthesis and mechanistic insights of coumarinyl-Indolinone hybrids as potent inhibitors of leishmania major. Eur. J. Med. Chem. 288, 117392 (2025).
-
Ebaid, M. S. et al. Identification of coumarin-chalcone and coumarin-pyrazoline derivatives as novel anti-toxoplasma gondii agents. Drug Des. Dev. Ther. 18, 5599 (2024).
-
Batran, R. Z. et al. Design, synthesis and molecular modeling of pyrazoline based coumarin derivatives as tubulin polymerization inhibitors. J. Mol. Struct. 1318, 139123 (2024).
-
Sabt, A. et al. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: Design, synthesis, dual BRAF V600E/VEGFR-2 inhibition, and computational studies. RSC Adv. 14, 5907 (2024).
-
Batran, R. Z., Ahmed, E. Y., Nossier, E. S., Awad, H. M. & Latif, N. A. Anticancer activity of new triazolopyrimidine linked coumarin and quinolone hybrids: Synthesis, molecular modeling, TrkA, PI3K/AKT and EGFR Inhibition. J. Mol. Struct. 1305, 137790 (2024).
-
Batran, R. Z., Sabt, A., Dziadek, J. & Kassem, A. F. Design, synthesis and computational studies of new azaheterocyclic coumarin derivatives as anti-mycobacterium tuberculosis agents targeting Enoyl acyl carrier protein reductase (InhA). RSC Adv. 14, 21763 (2024).
-
Batran, R. Z., Ahmed, E. Y., Awad, H. M., Ali, K. A. & Latif, N. A. EGFR and PI3K/m-TOR inhibitors: Design, microwave assisted synthesis and anticancer activity of thiazole–coumarin hybrids. RSC Adv. 13, 29070 (2023).
-
Sharifi-Rad, J. et al. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxid. Med. Cell Longev. 6492346 (2021). (2021).
-
Giovannuzzi, S. et al. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 37, 333 (2022).
-
Batran, R. Z. et al. 4-Phenylcoumarin derivatives as new HIV-1 nnrtis: Design, synthesis, biological activities, and computational studies. Bioorg. Chem. 141, 106918 (2023).
-
Batran, R. Z., Khedr, M. A., Latif, N. A., El Aty, A. & Shehata, A. A. Synthesis, homology modeling, molecular docking, dynamics, and antifungal screening of new 4-hydroxycoumarin derivatives as potential chitinase inhibitors. J. Mol. Struct. 1180, 260 (2019).
-
Bettia, N., Shiab, J. S., Kadhumc, A. A. & Al-Amieryd, A. A. Harnessing coumarin chemistry: Antibacterial, antifungal, and antioxidant profiling of novel coumarin derivatives. J. Med. Pharm. Chem. Res. 6, 1530 (2024).
-
Afshar, M., Hassanzadeh-Taheri, M., Zardast, M. & Honarmand, M. Efficacy of topical application of coumarin on incisional wound healing in BALB/c mice. Iran. J. Dermatol. 23, 56 (2020).
-
Sahoo, J. & Kumar, P. S. Biological evaluation and spectral characterization of 4-hydroxy coumarin analogues. J. Taibah Univ. Med. Sci. 10, 306 (2015).
-
Dutra, F. V. et al. Coumarin/β-Cyclodextrin inclusion complexes promote acceleration and improvement of wound healing. ACS Appl. Mater. Interfaces. 16, 30900 (2024).
-
Kim, T. Y. et al. Iridoid glycosides and coumarin glycoside derivatives from the roots of nymphoides peltata and their In vitro wound healing properties. Int. J. Mol. Sci. 25, 1268 (2024).
-
De, S. et al. Pyridine: the scaffolds with significant clinical diversity. Rsc Adv. 12, 15385 (2022).
-
Ali, I. et al. Synthesis and characterization of pyridine-based organic salts: Their antibacterial, antibiofilm and wound healing activities. Bioorg. Chem. 100, 103937 (2020).
-
Batran, R. Z., Ahmed, E. Y., Awad, H. M. & Latif, N. A. Naturally based pyrazoline derivatives as aminopeptidase N, VEGFR2 and MMP9 inhibitors: Design, synthesis and molecular modeling. RSC Adv. 14, 22434 (2024).
-
Sohn, E. H., Kim, S. N. & Lee, S. R. Melatonin’s impact on wound healing. Antioxidants 13, 1197 (2024).
-
Elsayed, M. A., Elsayed, A. M. & Sroor, F. M. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship. Med. Chem. Res. 33, 476 (2024).
-
Li, G. et al. Pyrazole-containing pharmaceuticals: Target, pharmacological activity, and their SAR studies. RSC Med. Chem. 13, 1300 (2022).
-
Seo, G. Y. et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J. Biomed. Sci. 22, 1 (2015).
-
Shirinzadeh, H., Süzen, S., Altanlar, N. & Westwell, A. D. Antimicrobial activities of new Indole derivatives containing 1, 2, 4-triazole, 1, 3, 4-thiadiazole and carbothioamide. Turk. J. Pharm. Sci. 15, 291 (2018).
-
Sabarees, G., Velmurugan, V., Gouthaman, S., Solomon, V. R. & Kandhasamy, S. Fabrication of quercetin-functionalized morpholine and pyridine Motifs-Laden silk fibroin nanofibers for effective wound healing in preclinical study. Pharmaceutics 16, 462 (2024).
-
Elsayed, R. E., Madkour, T. M. & Azzam, R. A. Tailored-design of electrospun nanofiber cellulose acetate/poly (lactic acid) dressing Mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int. J. Biol. Macromol. 164, 1984 (2020).
-
Qin, H. L., Zhang, Z. W., Ravindar, L. & Rakesh, K. P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem. 207, 112832 (2020).
-
Venugopala, K. N., Rashmi, V. & Odhav, B. Review on natural coumarin lead compounds for their Pharmacological activity. Biomed. Res. Int. 963248 2013 (2013).
-
Aatif, M. et al. Potential nitrogen-based heterocyclic compounds for treating infectious diseases: A literature review. Antibiotics 11, 1750 (2022).
-
Sabt, A., Abdelrahman, M. T., Abdelraof, M. & Rashdan, H. R. Investigation of novel mucorales fungal inhibitors: Synthesis, in-silico study and anti-fungal potency of novel class of coumarin-6-sulfonamides-thiazole and thiadiazole hybrids. ChemistrySelect 7, e202200691 (2022).
-
Abo-Salem, H. M. et al. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int. J. Biol. Macromol. 272, 132631 (2024).
-
El-Sawy, E. R., Abdel-Aziz, M. S., Abdelmegeed, H. & Kirsch, G. Coumarins: Quorum sensing and biofilm formation Inhibition. Molecules 29, 4534 (2024).
-
Sahoo, C. R. et al. Coumarin derivatives as promising antibacterial agent (s). Arab. J. Chem. 14, 102922 (2021).
-
Cheke, R. S. et al. Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics 11, 566 (2022).
-
Kim, D. Y., Kang, Y. H. & Kang, M. K. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J. Mol. Med. 102, 1457 (2024).
-
Adams, D. H., Shou, Q., Wohlmuth, H. & Cowin, A. J. Native Australian plant extracts differentially induce collagen I and collagen III in vitro and could be important targets for the development of new wound healing therapies. Fitoterapia 109, 45 (2016).
-
Pooranachithra, M. et al. Unravelling the wound healing ability and mode of action of pyridine Carboxamide oxime using caenorhabditis elegans as potential prescreen wound model. Life Sci. 235, 116859 (2019).
-
Morrison, D. K. MAP kinase pathways. Cold Spring Harb Perspect. Biol. 4, a011254 (2012).
-
Abdelhafez, O. M. et al. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem. 18, 3371 (2010).
-
Nirusha, K. et al. Exploration of piperazine-citral sulfonyl derivatives: Antibacterial and in-silico studies against methicillin-resistant Staphylococcus aureus. Arch. Microbiol. 207, 562025 (2025).
-
He, M. M. et al. Small-molecule Inhibition of TNF-α. Science 310, 1022 (2005).
-
Gilbert, N. C. et al. Structural and mechanistic insights into 5-lipoxygenase Inhibition by natural products. Nat. Chem. Biol. 16, 783 (2020).
-
Harman, C. A. et al. Structural basis of enantioselective Inhibition of cyclooxygenase-1 by S-alpha-substituted indomethacin ethanolamides. J. Biol. Chem. 282, 28096 (2007).
-
Orlando, B. J. & Malkowski, M. G. Substrate-selective Inhibition of cyclooxygeanse-2 by Fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem. 291, 15069 (2016).
-
Chaikuad, A. et al. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat. Chem. Biol. 10, 853 (2014).
-
MarvinSketch (version 22.2, by ChemAxon).
-
Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated Docking with selective receptor flexibility. J. Comput. Chem. 30, 2785 (2009).
-
Trott, O. & Olson, A. J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455 (2010).
-
BIOVIA & Systèmes, D. Discovery Studio Visualizer, V25.1.0 (Dassault Systèmes, 2025).
-
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405 (2016).
-
Brooks, B. R. et al. Caflisch, A. CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545 (2009).
-
Aboukhatwa, S. M. et al. Nicotinonitrile-derived apoptotic inducers: Design, synthesis, X-ray crystal structure and Pim kinase Inhibition. Bioorg. Chem. 129, 106126 (2022).
-
Abraham, M. J. et al. High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX GROMACS, 1, 19 (2015).
-
Kumari, R., Kumar, R., Open Source, Drug Discovery Consortium & Lynn, A. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951 (2014).
