Exploring the molecular interaction of bioactive peptides with antioxidative, antidiabetic and anti-inflammatory attributes from sheep milk fermented with lactobacillus and yeast

exploring-the-molecular-interaction-of-bioactive-peptides-with-antioxidative,-antidiabetic-and-anti-inflammatory-attributes-from-sheep-milk-fermented-with-lactobacillus-and-yeast
Exploring the molecular interaction of bioactive peptides with antioxidative, antidiabetic and anti-inflammatory attributes from sheep milk fermented with lactobacillus and yeast

References

  1. Lambrini, K. et al. Milk nutritional composition and its role in human health. J. Pharm. Pharmacol. 9, 8–13 (2021).

    Google Scholar 

  2. Michaëlsson, K. et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ 349 (2014).

  3. Bouglé, D. & Bouhallab, S. Dietary bioactive peptides: human studies. Crit. Rev. Food Sci. Nutr. 57, 335–343 (2017).

    Google Scholar 

  4. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). FAOSTAT, (2022). Available at: https://www.fao.org/faostat/en/#rankings/countries_by_commodity

  5. Claeys, W. L. et al. Consumption of Raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. Food Control. 42, 188–201 (2014).

    Google Scholar 

  6. Park, Y. K. et al. The analysis of milk components and pathogenic bacteria isolated from bovine Raw milk in Korea. J. Dairy Sci. 90, 5405–5414 (2007).

    Google Scholar 

  7. Flis, Z. & Molik, E. Importance of bioactive substances in sheep’s milk in human health. Int. J. Mol. Sci. 22, 4364 (2021).

    Google Scholar 

  8. Zapa´snik, A., Sokołowska, B. & Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 11, 1283 (2022).

    Google Scholar 

  9. Qiao, H. et al. Effect of lactic acid bacteria on bacterial community structure and characteristics of sugarcane juice. Foods 11, 3134 (2022).

    Google Scholar 

  10. Capozzi, V., Fragasso, M. & Bimbo, F. Microbial resources, fermentation and reduction of negative externalities in food systems: patterns toward sustainability and resilience. Fermentation 7, 54 (2021).

    Google Scholar 

  11. Chaves-López, C. et al. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol. 42, 117–121 (2014).

    Google Scholar 

  12. Khan, I. T. et al. The antioxidant components of milk and their role in processing, ripening, and storage: functional food. Veterinary World. 12, 12 (2019).

    Google Scholar 

  13. Federation, I. D. IDF Diabetes Atlas, 10th ed., (2021).

  14. González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R. & Martínez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int. J. Mol. Sci. 19, 2883 (2018).

  15. DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Reviews Disease Primers. 1, 1–22 (2015).

    Google Scholar 

  16. Silveira, S. T., Martínez-Maqueda, D., Recio, I. & Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a Whey protein concentrate rich in β-lactoglobulin. Food Chem. 141, 1072–1077 (2013).

    Google Scholar 

  17. Deacon, C. F. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides 100, 150–157 (2018).

    Google Scholar 

  18. Sah, B. N. P., Vasiljevic, T., McKechnie, S. & Donkor, O. N. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156, 264–270 (2014).

    Google Scholar 

  19. Telagari, M. & Hullatti, K. In vitro α-amylase And α-glucosidase inhibitory activity of adiantum caudatum Linn. And celosia Argentea Linn. Extracts And fractions. Indian J. Pharmacol. 47, 425 (2015).

    Google Scholar 

  20. Ademiluyi, A. O. & Oboh, G. Soybean phenolic-rich extracts inhibit key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 65, 305–309 (2013).

    Google Scholar 

  21. Shai, L. J., Magano, S. R., Lebelo, S. L. & Mogale, A. M. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: comparison with their effects on yeast alpha-glucosidase. J. Med. Plants Res. 5, 2863–2867 (2011).

    Google Scholar 

  22. Yamaki, K. & Mori, Y. Evaluation of alpha-glucosidase inhibitory activity in colored foods: A trial using slope factors of regression curves. J. Japanese Soc. Food Sci. Technol. 53, 229–231 (2006).

    Google Scholar 

  23. Hati, S., Sreeja, V., Solanki, D. & Prajapati, J. B. Influence of proteolytic lactobacilli on ACE inhibitory activity and release of BAPs. Indian J. Dairy. Sci. 68, 1–8 (2015).

    Google Scholar 

  24. Solanki, D., Hati, S. & Sakure, A. In Silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int. J. Pept. Res. Ther. 23, 441–459 (2017).

    Google Scholar 

  25. Carrasco-Castilla, J. et al. Antioxidant and metal chelating activities of phaseolus vulgaris L. var. Jamapa protein isolates, Phaseolin and lectin hydrolysates. Food Chem. 131, 1157–1164 (2012).

    Google Scholar 

  26. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Google Scholar 

  27. Yang, Y. et al. Animal species milk identification by comparison of two-dimensional gel map profile and mass spectrometry approach. Int. Dairy J. 35, 15–20 (2014).

    Google Scholar 

  28. Panchal, G., Hati, S. & Sakure, A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. Food Sci. Technol. 119, 108887 (2020).

    Google Scholar 

  29. Khakhariya, R. et al. A comparative study of fermented Buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bioactive peptides with molecular interactions: in vitro, in Silico and molecular study. Food Bioscience. 52, 102373 (2023).

    Google Scholar 

  30. Pipaliya, R. et al. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular Docking studies. Front. Chem. 12, 1389846 (2024).

    Google Scholar 

  31. Singh, B. P., Paul, S. & Goel, G. Shotgun proteomics and molecular simulations on multifunctional bioactive peptides derived from the Whey of unexplored ‘Gaddi’ goat of Himalayas. Food Chem. 430, 137075 (2024).

    Google Scholar 

  32. Rawat, A. et al. Modulatory effects of synbiotic blend on selected human fecal bacteria and TNFα + LPS-induced inflammation in human intestinal epithelial cells. Microbe 18, 100512 (2025).

    Google Scholar 

  33. Steel, R. G. D. & Torrie, J. H. Principles and procedure of statistics-a biometrical approach, McGraw Hill Kogakusha Ltd., Japan : 137. (1980).

  34. Ashokbhai, J. K. et al. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. J. Food Sci. Technol. 59, 4262–4272 (2022).

    Google Scholar 

  35. De Lima, M. D. S. F. et al. Brazilian Kefir fermented sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics Antimicrob. Proteins. 10, 446–455 (2018).

    Google Scholar 

  36. Layer, P., Go, V. L. & DiMagno, E. P. Carbohydrate digestion and release of pancreatic polypeptide in health and diabetes mellitus. Gut 30, 1279–1284 (1989).

    Google Scholar 

  37. da Cruz, G., Buriti, F. C. A., de Souza, C. H. B., Faria, J. A. F. & Saad, S. M. I. Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci. Technol. 20, 344–354 (2009).

    Google Scholar 

  38. Pipaliya, R. et al. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular Docking studies. J. Sci. Food. Agric. 105, 4096–4120 (2025).

    Google Scholar 

  39. Bhuva, B. et al. Influence of Lactobacillus and yeast on antioxidative, antidiabetic, and anti-inflammatory attributes of camel milk and Gir cow milk as well as release of bioactive peptides: A comparative study. J. Food Sci. 90, e70112 (2025).

    Google Scholar 

  40. Ashokbhai, J. K. et al. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. Food Bioscience. 47, 101666 (2022).

    Google Scholar 

  41. Suetsuna, K., Ukeda, H. & Ochi, H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11 (3), 128–131 (2000).

    Google Scholar 

  42. Wang, R., Zhao, Y., Xue, W., Xia, Y. & Liang, G. Novel antioxidant peptides from soybean protein by employ computational and experimental methods and their mechanisms of oxidative stress resistance. J. Mol. Struct. 1318, 139284 (2024).

    Google Scholar 

  43. Yokomizo, Y., Takenaka & Takenaka, T. Antioxidative activity of peptides prepared from Okara protein. Food Sci. Technol. Res. 8 (4), 357–359 (2002).

    Google Scholar 

  44. Saito, K. et al. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51 (12), 3668–3674 (2003).

    Google Scholar 

  45. Du, Z. & Li, Y. Computer-aided approaches for screening antioxidative dipeptides and application to sorghum proteins. ACS Food Sci. Technol. 2 (11), 1781–1788 (2022).

    Google Scholar 

  46. Du, Z., Wang, D. & Li, Y. Comprehensive evaluation and comparison of machine learning methods in QSAR modeling of antioxidant tripeptides. ACS Omega. 7 (29), 25760–25771 (2022).

    Google Scholar 

  47. Yang, J. et al. Purification and identification of two novel antioxidant peptides from Perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PLOS One. 13 (7), e0200021 (2018).

    Google Scholar 

  48. Liu, R. et al. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC–Q-TOF mass spectrometry. Food Chem. 167, 484–489 (2015).

    Google Scholar 

  49. Amigo, L., Martínez-Maqueda, D. & Hernández-Ledesma, B. In Silico and in vitro analysis of multifunctionality of animal food-derived peptides. Foods 9 (8), 991 (2020).

    Google Scholar 

  50. Lan, V. T. T. et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem. 175, 66–73 (2015).

    Google Scholar 

  51. Bella, A. M. Jr, Erickson, R. H. & Kim, Y. S. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV: kinetic properties and substrate specificities of the purified enzyme. Arch. Biochem. Biophys. 218 (1), 156–162 (1982).

    Google Scholar 

  52. Hatanaka, T. et al. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice Bran. Food Chem. 134 (2), 797–802 (2012).

    Google Scholar 

  53. Nongonierma, A. B. & FitzGerald, R. J. An in Silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem. 165, 489–498 (2014).

    Google Scholar 

  54. Tulipano, G., Sibilia, V., Caroli, A. M. & Cocchi, D. Whey proteins as source of dipeptidyl peptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32 (4), 835–838 (2011).

    Google Scholar 

  55. Hikida, K., Ito, T., Motoyama, R., Kato & Kawarasaki, Y. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system. Biochem. Biophys. Res. Commun. 430 (4), 1217–1222 (2013).

    Google Scholar 

  56. Nongonierma, A. B., Mooney, C., Shields, D. C. & FitzGerald, R. J. In Silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 57, 43–51 (2014).

    Google Scholar 

  57. Shukla, P. et al. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J. Food Biochem. 46 (12), e14449 (2022).

    Google Scholar 

  58. Etsassala, N. G. et al. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents. Antioxidants 9 (11), 1149–1159 (2020).

    Google Scholar 

  59. Akshatha, J. V., Santosh Kumar, H. S., Prakash, H. S. & Nalini, M. S. In Silico Docking studies of α-amylase inhibitors from the anti-diabetic plant leucas ciliata Benth. And an endophyte, streptomyces Longisporoflavus. 3 Biotech. 11 (2), 51–58 (2021).

    Google Scholar 

  60. Bhaumik, S. et al. α-Glucosidase inhibitory potential of oroxylum indicum using molecular docking, molecular dynamics, and in vitro evaluation. Saudi Pharm. J. 32 (6), 102095 (2024).

    Google Scholar 

  61. Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461 (2010).

    Google Scholar 

  62. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30 (16), 2785–2791 (2009).

    Google Scholar 

  63. Nguyen, H. T., Afsar, S. & Day, L. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk. Food Res. Int. 108, 423–429 (2018).

    Google Scholar 

Download references