References
-
Lambrini, K. et al. Milk nutritional composition and its role in human health. J. Pharm. Pharmacol. 9, 8–13 (2021).
-
Michaëlsson, K. et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ 349 (2014).
-
Bouglé, D. & Bouhallab, S. Dietary bioactive peptides: human studies. Crit. Rev. Food Sci. Nutr. 57, 335–343 (2017).
-
Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). FAOSTAT, (2022). Available at: https://www.fao.org/faostat/en/#rankings/countries_by_commodity
-
Claeys, W. L. et al. Consumption of Raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. Food Control. 42, 188–201 (2014).
-
Park, Y. K. et al. The analysis of milk components and pathogenic bacteria isolated from bovine Raw milk in Korea. J. Dairy Sci. 90, 5405–5414 (2007).
-
Flis, Z. & Molik, E. Importance of bioactive substances in sheep’s milk in human health. Int. J. Mol. Sci. 22, 4364 (2021).
-
Zapa´snik, A., Sokołowska, B. & Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 11, 1283 (2022).
-
Qiao, H. et al. Effect of lactic acid bacteria on bacterial community structure and characteristics of sugarcane juice. Foods 11, 3134 (2022).
-
Capozzi, V., Fragasso, M. & Bimbo, F. Microbial resources, fermentation and reduction of negative externalities in food systems: patterns toward sustainability and resilience. Fermentation 7, 54 (2021).
-
Chaves-López, C. et al. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol. 42, 117–121 (2014).
-
Khan, I. T. et al. The antioxidant components of milk and their role in processing, ripening, and storage: functional food. Veterinary World. 12, 12 (2019).
-
Federation, I. D. IDF Diabetes Atlas, 10th ed., (2021).
-
González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R. & Martínez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int. J. Mol. Sci. 19, 2883 (2018).
-
DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Reviews Disease Primers. 1, 1–22 (2015).
-
Silveira, S. T., Martínez-Maqueda, D., Recio, I. & Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a Whey protein concentrate rich in β-lactoglobulin. Food Chem. 141, 1072–1077 (2013).
-
Deacon, C. F. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides 100, 150–157 (2018).
-
Sah, B. N. P., Vasiljevic, T., McKechnie, S. & Donkor, O. N. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156, 264–270 (2014).
-
Telagari, M. & Hullatti, K. In vitro α-amylase And α-glucosidase inhibitory activity of adiantum caudatum Linn. And celosia Argentea Linn. Extracts And fractions. Indian J. Pharmacol. 47, 425 (2015).
-
Ademiluyi, A. O. & Oboh, G. Soybean phenolic-rich extracts inhibit key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 65, 305–309 (2013).
-
Shai, L. J., Magano, S. R., Lebelo, S. L. & Mogale, A. M. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: comparison with their effects on yeast alpha-glucosidase. J. Med. Plants Res. 5, 2863–2867 (2011).
-
Yamaki, K. & Mori, Y. Evaluation of alpha-glucosidase inhibitory activity in colored foods: A trial using slope factors of regression curves. J. Japanese Soc. Food Sci. Technol. 53, 229–231 (2006).
-
Hati, S., Sreeja, V., Solanki, D. & Prajapati, J. B. Influence of proteolytic lactobacilli on ACE inhibitory activity and release of BAPs. Indian J. Dairy. Sci. 68, 1–8 (2015).
-
Solanki, D., Hati, S. & Sakure, A. In Silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int. J. Pept. Res. Ther. 23, 441–459 (2017).
-
Carrasco-Castilla, J. et al. Antioxidant and metal chelating activities of phaseolus vulgaris L. var. Jamapa protein isolates, Phaseolin and lectin hydrolysates. Food Chem. 131, 1157–1164 (2012).
-
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
-
Yang, Y. et al. Animal species milk identification by comparison of two-dimensional gel map profile and mass spectrometry approach. Int. Dairy J. 35, 15–20 (2014).
-
Panchal, G., Hati, S. & Sakure, A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. Food Sci. Technol. 119, 108887 (2020).
-
Khakhariya, R. et al. A comparative study of fermented Buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bioactive peptides with molecular interactions: in vitro, in Silico and molecular study. Food Bioscience. 52, 102373 (2023).
-
Pipaliya, R. et al. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular Docking studies. Front. Chem. 12, 1389846 (2024).
-
Singh, B. P., Paul, S. & Goel, G. Shotgun proteomics and molecular simulations on multifunctional bioactive peptides derived from the Whey of unexplored ‘Gaddi’ goat of Himalayas. Food Chem. 430, 137075 (2024).
-
Rawat, A. et al. Modulatory effects of synbiotic blend on selected human fecal bacteria and TNFα + LPS-induced inflammation in human intestinal epithelial cells. Microbe 18, 100512 (2025).
-
Steel, R. G. D. & Torrie, J. H. Principles and procedure of statistics-a biometrical approach, McGraw Hill Kogakusha Ltd., Japan : 137. (1980).
-
Ashokbhai, J. K. et al. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. J. Food Sci. Technol. 59, 4262–4272 (2022).
-
De Lima, M. D. S. F. et al. Brazilian Kefir fermented sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics Antimicrob. Proteins. 10, 446–455 (2018).
-
Layer, P., Go, V. L. & DiMagno, E. P. Carbohydrate digestion and release of pancreatic polypeptide in health and diabetes mellitus. Gut 30, 1279–1284 (1989).
-
da Cruz, G., Buriti, F. C. A., de Souza, C. H. B., Faria, J. A. F. & Saad, S. M. I. Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci. Technol. 20, 344–354 (2009).
-
Pipaliya, R. et al. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular Docking studies. J. Sci. Food. Agric. 105, 4096–4120 (2025).
-
Bhuva, B. et al. Influence of Lactobacillus and yeast on antioxidative, antidiabetic, and anti-inflammatory attributes of camel milk and Gir cow milk as well as release of bioactive peptides: A comparative study. J. Food Sci. 90, e70112 (2025).
-
Ashokbhai, J. K. et al. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. Food Bioscience. 47, 101666 (2022).
-
Suetsuna, K., Ukeda, H. & Ochi, H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11 (3), 128–131 (2000).
-
Wang, R., Zhao, Y., Xue, W., Xia, Y. & Liang, G. Novel antioxidant peptides from soybean protein by employ computational and experimental methods and their mechanisms of oxidative stress resistance. J. Mol. Struct. 1318, 139284 (2024).
-
Yokomizo, Y., Takenaka & Takenaka, T. Antioxidative activity of peptides prepared from Okara protein. Food Sci. Technol. Res. 8 (4), 357–359 (2002).
-
Saito, K. et al. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51 (12), 3668–3674 (2003).
-
Du, Z. & Li, Y. Computer-aided approaches for screening antioxidative dipeptides and application to sorghum proteins. ACS Food Sci. Technol. 2 (11), 1781–1788 (2022).
-
Du, Z., Wang, D. & Li, Y. Comprehensive evaluation and comparison of machine learning methods in QSAR modeling of antioxidant tripeptides. ACS Omega. 7 (29), 25760–25771 (2022).
-
Yang, J. et al. Purification and identification of two novel antioxidant peptides from Perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PLOS One. 13 (7), e0200021 (2018).
-
Liu, R. et al. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC–Q-TOF mass spectrometry. Food Chem. 167, 484–489 (2015).
-
Amigo, L., Martínez-Maqueda, D. & Hernández-Ledesma, B. In Silico and in vitro analysis of multifunctionality of animal food-derived peptides. Foods 9 (8), 991 (2020).
-
Lan, V. T. T. et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem. 175, 66–73 (2015).
-
Bella, A. M. Jr, Erickson, R. H. & Kim, Y. S. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV: kinetic properties and substrate specificities of the purified enzyme. Arch. Biochem. Biophys. 218 (1), 156–162 (1982).
-
Hatanaka, T. et al. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice Bran. Food Chem. 134 (2), 797–802 (2012).
-
Nongonierma, A. B. & FitzGerald, R. J. An in Silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem. 165, 489–498 (2014).
-
Tulipano, G., Sibilia, V., Caroli, A. M. & Cocchi, D. Whey proteins as source of dipeptidyl peptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32 (4), 835–838 (2011).
-
Hikida, K., Ito, T., Motoyama, R., Kato & Kawarasaki, Y. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system. Biochem. Biophys. Res. Commun. 430 (4), 1217–1222 (2013).
-
Nongonierma, A. B., Mooney, C., Shields, D. C. & FitzGerald, R. J. In Silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 57, 43–51 (2014).
-
Shukla, P. et al. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J. Food Biochem. 46 (12), e14449 (2022).
-
Etsassala, N. G. et al. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of salvia aurita constituents. Antioxidants 9 (11), 1149–1159 (2020).
-
Akshatha, J. V., Santosh Kumar, H. S., Prakash, H. S. & Nalini, M. S. In Silico Docking studies of α-amylase inhibitors from the anti-diabetic plant leucas ciliata Benth. And an endophyte, streptomyces Longisporoflavus. 3 Biotech. 11 (2), 51–58 (2021).
-
Bhaumik, S. et al. α-Glucosidase inhibitory potential of oroxylum indicum using molecular docking, molecular dynamics, and in vitro evaluation. Saudi Pharm. J. 32 (6), 102095 (2024).
-
Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461 (2010).
-
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30 (16), 2785–2791 (2009).
-
Nguyen, H. T., Afsar, S. & Day, L. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk. Food Res. Int. 108, 423–429 (2018).
