Exploring the role of food-source microRNAs as potential nutritional bioactives in humans

exploring-the-role-of-food-source-micrornas-as-potential-nutritional-bioactives-in-humans
Exploring the role of food-source microRNAs as potential nutritional bioactives in humans

References

  1. Milenkovic, D., Jude, B. & Morand, C. miRNA as molecular target of polyphenols underlying their biological effects. Free Radic. Biol. Med. 64, 40–51 (2013).

    Google Scholar 

  2. Nuthikattu, S., Milenkovic, D., Rutledge, J. & Villablanca, A. The western diet regulates hippocampal microvascular gene expression: an integrated genomic analyses in female mice. Sci. Rep. 9, 19058 (2019).

    Google Scholar 

  3. Ruskovska, T. et al. Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans—evidence from untargeted mRNA and miRNA studies. Ageing Res. Rev. 79, 101649 (2022).

    Google Scholar 

  4. Krga, I. et al. Grapefruit juice flavanones modulate the expression of genes regulating inflammation, cell interactions and vascular function in peripheral blood mononuclear cells of postmenopausal women. Front. Nutr. 9, 907595 (2022).

    Google Scholar 

  5. Zhang, L. et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126 (2012).

    Google Scholar 

  6. Zhu, H. & Fan, G.-C. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am. J. Cardiovasc. Dis. 1, 138–149 (2011).

    Google Scholar 

  7. Groot, M. & Lee, H. Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells 9, 1044 (2020).

    Google Scholar 

  8. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Google Scholar 

  9. Sunkar, R., Girke, T., Jain, P. K. & Zhu, J.-K. Cloning and characterization of microRNAs from rice. Plant Cell 17, 1397–1411 (2005).

    Google Scholar 

  10. Liu, Y. et al. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15, 695 (2014).

    Google Scholar 

  11. Chen, M. et al. MiRNA profiling in pectoral muscle throughout pre- to post-natal stages of chicken development. Front. Genet. 11, 570 (2020).

    Google Scholar 

  12. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    Google Scholar 

  13. Benmoussa, A. et al. Concentrates of two subsets of extracellular vesicles from cow’s milk modulate symptoms and inflammation in experimental colitis. Sci. Rep. 9, 14661 (2019).

    Google Scholar 

  14. Leduc, A. et al. MiRNome variations in milk fractions during feed restrictions of different intensities in dairy cows. BMC Genomics 24, 680 (2023).

    Google Scholar 

  15. Leroux, C. et al. Exploration of microRNAs in butter and their potential influence on human health. Int. Dairy J. https://doi.org/10.1016/j.idairyj.2024.106095 (2024).

  16. Abou El Qassim, L. Effects of cow’s milk processing on microrna levels. Foods 12, 2950 (2023).

    Google Scholar 

  17. Liu, Y.-C., Chen, W. L., Kung, W.-H. & Huang, H.-D. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics 18, 112 (2017).

    Google Scholar 

  18. Liang, H. et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J. Nutr. Biochem. 26, 505–512 (2015).

    Google Scholar 

  19. Luo, Y. et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci. Rep. 7, 645 (2017).

    Google Scholar 

  20. Dickinson, B. et al. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. 31, 965–967 (2013).

    Google Scholar 

  21. Laubier, J., Castille, J., Le Guillou, S. & Le Provost, F. No effect of an elevated miR-30b level in mouse milk on its level in pup tissues. RNA Biol. 12, 26–29 (2015).

    Google Scholar 

  22. Mar-Aguilar, F. et al. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ 8, e9567 (2020).

    Google Scholar 

  23. Del Pozo-Acebo, L., López de Las Hazas, M.-C., Margollés, A., Dávalos, A. & García-Ruiz, A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. Br. J. Pharmacol. 178, 2218–2245 (2021).

    Google Scholar 

  24. Arntz, O. J. et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res. 59, 1701–1712 (2015).

    Google Scholar 

  25. Liao, Y., Du, X., Li, J. & Lönnerdal, B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res 61, 1700082 (2017).

    Google Scholar 

  26. Manca, S. et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep. 8, 11321 (2018).

    Google Scholar 

  27. Hicks, S. D., Beheshti, R., Chandran, D., Warren, K. & Confair, A. Infant consumption of microRNA miR-375 in human milk lipids is associated with protection from atopy. Am. J. Clin. Nutr. 116, 1654–1662 (2022).

    Google Scholar 

  28. Pieters, B. C. H. et al. Bovine milk-derived extracellular vesicles inhibit catabolic and inflammatory processes in cartilage from osteoarthritis patients. Mol. Nutr. Food Res. 66, e2100764 (2022).

    Google Scholar 

  29. Shah, K. B. et al. Human milk exosomal MicroRNA: associations with maternal overweight/obesity and infant body composition at 1 month of life. Nutrients 13, 1091 (2021).

  30. Chin, A. R. et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 26, 217–228 (2016).

    Google Scholar 

  31. Vaucheret, H. & Chupeau, Y. Ingested plant miRNAs regulate gene expression in animals. Cell Res. 22, 3–5 (2012).

    Google Scholar 

  32. Zhang, J. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteom. Bioinforma. 13, 17–24 (2015).

    Google Scholar 

  33. Li, Y. et al. Analyses of MicroRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development. Front. Genet. 10, 197 (2019).

    Google Scholar 

  34. Li, N., Yu, Q.-L., Yan, X.-M., Li, H.-B. & Zhang, Y. Sequencing and characterization of miRNAs and mRNAs from the longissimus dorsi of Xinjiang brown cattle and Kazakh cattle. Gene 741, 144537 (2020).

    Google Scholar 

  35. Hou, X. et al. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol. Genet. Genomics 291, 559–573 (2016).

    Google Scholar 

  36. Le Guillou, S. et al. Characterization of Holstein and Normande whole milk miRNomes highlights breed specificities. Sci. Rep. 9, 20345 (2019).

    Google Scholar 

  37. Visser, M., van der Walt, A. P., Maree, H. J., Rees, D. J. G. & Burger, J. T. Extending the sRNAome of apple by next-generation sequencing. PLoS One 9, e95782 (2014).

    Google Scholar 

  38. Bi, F., Meng, X., Ma, C. & Yi, G. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16, 776 (2015).

    Google Scholar 

  39. Wang, C. et al. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 13, 122 (2012).

    Google Scholar 

  40. Vaz, C. et al. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics 11, 288 (2010).

    Google Scholar 

  41. Dreher, M. L. Whole fruits and fruit fiber emerging health effects. Nutrients 10, 1833 (2018).

    Google Scholar 

  42. Giromini, C. & Givens, D. I. Benefits and risks associated with meat consumption during key life processes and in relation to the risk of chronic diseases. Foods 11, 2063 (2022).

    Google Scholar 

  43. German, J. B. Dietary lipids from an evolutionary perspective: sources, structures and functions. Matern. Child Nutr. 7, 2–16 (2011).

    Google Scholar 

  44. Argov, N., Lemay, D. G. & German, J. B. Milk Fat Globule structure & function; nanosciece comes to milk production. Trends Food Sci. Technol. 19, 10.1016/j.tifs.2008.07.006 (2008).

  45. Dever, J. T. et al. Survival and diversity of human homologous dietary micrornas in conventionally cooked top sirloin and dried bovine tissue extracts. PLoS One 10, e0138275 (2015).

    Google Scholar 

  46. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358–369 (2012).

    Google Scholar 

  47. Ragan, C., Zuker, M. & Ragan, M. A. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput. Biol. 7, e1001090 (2011).

    Google Scholar 

  48. Leroux, C., Chervet, M. L. & German, J. B. Perspective: milk microRNAs as important players in infant physiology and development. Adv. Nutr. 12, 1625–1635 (2021).

    Google Scholar 

  49. Zhou, M., Deng, T., Tan, Y., Liu, L. & Wang, M. miR-26 inhibits proliferation and promotes apoptosis of multiple myeloma cells by targeting BNIP3. Cell Mol. Biol. 69, 260–265 (2023).

    Google Scholar 

  50. Dong, S. et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem. 284, 29514–29525 (2009).

    Google Scholar 

  51. Buller, B. et al. MicroRNA-21 protects neurons from ischemic death. FEBS J. 277, 4299–4307 (2010).

    Google Scholar 

  52. Sheedy, F. J. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11, 141–147 (2010).

    Google Scholar 

  53. Surina, S. et al. miR-21 in human cardiomyopathies. Front. Cardiovasc. Med. 8, 767064 (2021).

    Google Scholar 

  54. Sun, L. et al. Neuroprotective effects of miR-27a against traumatic brain injury via suppressing FoxO3a-mediated neuronal autophagy. Biochem. Biophys. Res. Commun. 482, 1141–1147 (2017).

    Google Scholar 

  55. Veliceasa, D. et al. Therapeutic manipulation of angiogenesis with miR-27b. Vasc. Cell 7, 6 (2015).

    Google Scholar 

  56. Zhang, M., Sun, W., Zhou, M. & Tang, Y. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci. Rep. 7, 14493 (2017).

    Google Scholar 

  57. Bernstein, D. L., Jiang, X. & Rom, S. let-7 microRNAs: their role in cerebral and cardiovascular diseases, inflammation, cancer, and their regulation. Biomedicines 9, 606 (2021).

  58. Sun, X., Liu, J., Xu, C., Tang, S.-C. & Ren, H. The insights of Let-7 miRNAs in oncogenesis and stem cell potency. J. Cell. Mol. Med. 20, 1779–1788 (2016).

    Google Scholar 

  59. Bao, M.-H. et al. Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int. J. Mol. Sci. 14, 23086–23102 (2013).

    Google Scholar 

  60. Li, Y. et al. MicroRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato. Front. Plant Sci. 14, 1045112 (2023).

    Google Scholar 

  61. Wang, H. et al. Suppression of rice miR168 improves yield, flowering time and immunity. Nat. Plants 7, 129–136 (2021).

    Google Scholar 

  62. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    Google Scholar 

  63. Tang, D. et al. SRplot: a free online platform for data visualization and graphing. PLoS One 18, e0294236 (2023).

    Google Scholar 

Download references