References
-
Harrer, S., Shah, P., Antony, B. & Hu, J. Artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 40, 577–591 (2019).
-
Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).
-
Caudai, C. et al. AI applications in functional genomics. Comput Struct. Biotechnol. J. 19, 5762–5790 (2021).
-
Ringel, M. S., Scannell, J. W., Baedeker, M. & Schulze, U. Breaking Eroom’s law. Nat. Rev. Drug Discov. 19, 833–834 (2020).
-
Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).
-
Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).
-
Kapałczyńska, M. et al. 2D and 3D cell cultures-a comparison of different types of cancer cell cultures. Arch. Med Sci. 14, 910–919 (2018).
-
Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).
-
Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).
-
Na, J. et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact. Mater. 35, 549–563 (2024).
-
Fang, Y. & Eglen, R. M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 22, 456–472 (2017).
-
Youhanna, S. onia et al. Organotypic and microphysiological human tissue models for drug discovery and development—current state-of-the-art and future perspectives. Pharm. Rev. 74, 141 (2022).
-
Decoene, I. et al. Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications. Stem Cells Translational Medicine szad091 (2024) https://doi.org/10.1093/stcltm/szad091.
-
Lee, S.-Y., Hwang, H. J. & Lee, D. W. Optimization of 3D-aggregated spheroid model (3D-ASM) for selecting high efficacy drugs. Sci. Rep. 12, 18937 (2022).
-
Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).
-
Quintard, C. et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 15, 1452 (2024).
-
Rodoplu, D., Matahum, J. S. & Hsu, C.-H. A microfluidic hanging drop-based spheroid co-culture platform for probing tumor angiogenesis. Lab Chip 22, 1275–1285 (2022).
-
Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).
-
McConnell, E. R., McClain, M. A., Ross, J., LeFew, W. R. & Shafer, T. J. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. NeuroToxicology 33, 1048–1057 (2012).
-
Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human ipsc-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).
-
Kobel, S. & Lutolf, M. Fabrication of PEG hydrogel microwell arrays for high-throughput single stem cell culture and analysis. Methods Mol. Biol. 811, 101–112 (2012).
-
Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).
-
Lin, S., Schorpp, K., Rothenaigner, I. & Hadian, K. Image-based high-content screening in drug discovery. Drug Discov. Today 25, 1348–1361 (2020).
-
Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1, 332–349 (2020).
-
Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).
-
Trask, O. J. Guidelines for microplate selection in high content imaging. Methods Mol. Biol. 1683, 75–88 (2018).
-
Nienhaus, F., Piotrowski, T., Nießing, B., König, N. & Schmitt, R. H. Adaptive phase contrast microscopy to compensate for the meniscus effect. Sci. Rep. 13, 5785 (2023).
-
Brooks, E. A., Jansen, L. E., Gencoglu, M. F., Yurkevicz, A. M. & Peyton, S. R. Complementary, semiautomated methods for creating multidimensional PEG-based biomaterials. ACS Biomater. Sci. Eng. 4, 707–718 (2018).
-
Skelton, M. L. et al. Modular multiwell viscoelastic hydrogel platform for two- and three-dimensional cell culture applications. ACS Biomater. Sci. Eng. 10, 3280–3292 (2024).
-
Machillot, P. et al. Automated buildup of biomimetic films in cell culture microplates for high-throughput screening of cellular behaviors. Adv. Mater. 30, 1801097 (2018).
-
Buxboim, A., Rajagopal, K., Brown, A. E. X. & Discher, D. E. How deeply cells feel: methods for thin gels. J. Phys.: Condens. Matter 22, 194116 (2010).
-
Zhang, N. et al. Soft hydrogels featuring in-depth surface density gradients for the simple establishment of 3D tissue models for screening applications. SLAS Discov. 22, 635–644 (2017).
-
Utama, R. H. et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience 23, 101621 (2020).
-
Atma, Y. Synthesis and application of fish gelatin for hydrogels/composite hydrogels: a review. Biointerface Res. Appl. Chem. 12, 3966–3976 (2022).
-
Yang, G. et al. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4, e2497 (2016).
-
Singh, S. P., Schwartz, M. P., Lee, J. Y., Fairbanks, B. D. & Anseth, K. S. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2, 1024–1034 (2014).
-
Lu, P. et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct. Target. Ther. 9, 166 (2024).
-
McCain, M. L., Agarwal, A., Nesmith, H. W., Nesmith, A. P. & Parker, K. K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35, 5462–5471 (2014).
-
Jensen, J. H. et al. Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates. Sci. Rep. 10, 13305 (2020).
-
Haug, I. J., Draget, K. I. & Smidsrød, O. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll. 18, 203–213 (2004).
-
Kim, Y.-J. & Uyama, H. Biocompatible hydrogel formation of gelatin from cold water fish via enzymatic networking. Polym. J. 39, 1040–1046 (2007).
-
Viscous liquids need special pipetting techniques. https://handling-solutions.eppendorf.com/liquid-handling/pipetting-facts/pipetting-of-challenging-liquids/detailview/news/viscous-liquids-need-special-pipetting-techniques/.
-
Lu, A., Zhu, J., Zhang, G. & Sun, G. Gelatin nanofibers fabricated by extruding immiscible polymer solution blend and their application in tissue engineering. J. Mater. Chem. 21, 18674–18680 (2011).
-
Sancakli, A., Basaran, B., Arican, F. & Polat, O. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Appl. Sci. 3, 8 (2021).
-
Song, K., Ren, B., Zhai, Y., Chai, W. & Huang, Y. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Biofabrication 14, 375 (2021).
-
Bode, F., da Silva, M. A., Drake, A. F., Ross-Murphy, S. B. & Dreiss, C. A. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12, 3741–3752 (2011).
-
Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).
-
Schneider, I. C., Hays, C. K. & Waterman, C. M. Epidermal growth factor–induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de-adhesion. MBoC 20, 3155–3167 (2009).
-
Laly, A. C. et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci. Adv. 7, eabd6187 (2021).
-
Sui, Y., Ding, H. & Spelt, P. D. M. Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97–119 (2014).
-
Tusan, C. G. et al. Collective cell behavior in mechanosensing of substrate thickness. Biophys. J. 114, 2743–2755 (2018).
-
Hernandez-Miranda, M. L. et al. Geometric constraint of mechanosensing by modification of hydrogel thickness prevents stiffness-induced differentiation in bone marrow stromal cells. J. R. Soc. Interface 21, 20240485 (2024).
-
M. Di Sante et al. CALIPERS: Cell cycle-aware live imaging for phenotyping experiments and regeneration studies. bioRxiv 2024.12.19.629259 (2024) https://doi.org/10.1101/2024.12.19.629259.
-
Hokeness, K. et al. IFN-gamma enhances paclitaxel-induced apoptosis that is modulated by activation of caspases 8 and 3 with a concomitant down regulation of the AKT survival pathway in cultured human keratinocytes. Oncol. Rep. 13, 965–969 (2005).
-
Kim, H.-E., Cho, H., Ishihara, A., Kim, B. & Kim, O. Cell proliferation and migration mechanism of caffeoylserotonin and serotonin via serotonin 2B receptor in human keratinocyte HaCaT cells. BMB Rep. 51, 188–193 (2018).
-
Gustafsson, M. & Sebesta, M. Refractometry of microscopic objects with digital holography. Appl. Opt. 43, 4796–4801 (2004).
-
Hellesvik, M., Øye, H. & Aksnes, H. Exploiting the potential of commercial digital holographic microscopy by combining it with 3D matrix cell culture assays. Sci. Rep. 10, 14680 (2020).
-
Cooper G. M. The Eukaryotic Cell Cycle. in The Cell: A Molecular Approach (SSinauer Associates, 2000).
-
Sharma, N., Kosan, Z., Stallworth, J., Berbari, N. & Yoder, B. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol. Biol. cell 22, 806–816 (2011).
-
Goler-Baron, V. & Assaraf, Y. G. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS ONE 6, e16007 (2011).
-
Elfarnawany, A. & Dehghani, F. Time- and concentration-dependent adverse effects of paclitaxel on non-neuronal cells in rat primary dorsal root ganglia. Toxics 11, 581 (2023).
-
Janmey, P. A., Fletcher, D. A. & Reinhart-King, C. A. Stiffness sensing by cells. Physiol. Rev. 100, 695–724 (2020).
-
Seal, S. et al. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. Preprint at (2024).
-
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
-
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection with Star-Convex Polygons. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265–273 (Springer, 2018).
-
Mansoury, M., Hamed, M., Karmustaji, R., Al Hannan, F. & Safrany, S. T. The edge effect: a global problem. The trouble with culturing cells in 96-well plates. Biochem Biophys. Rep. 26, 100987 (2021).
-
Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. (United States, 2019). https://doi.org/10.3791/60545.
-
Feng, M., Wang, J., Liu, S., Wanatowski, D. & Ren, Y. Coupling effect of curing temperature and relative humidity on the unconfined compressive strength of xanthan gum-treated sand. Constr. Build. Mater. 448, 138224 (2024).
-
Phawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S. & Chung, D. Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocoll. 88, 119–126 (2019).
-
Gao, L. et al. A photopolymerizable biocompatible hyaluronic acid hydrogel promotes early articular cartilage repair in a minipig model in vivo. Adv. Healthc. Mater. 12, 2300931 (2023).
-
Agarwal, A. et al. Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv. Funct. Mater. 23, 3738–3746 (2013).
-
Beaulieu, I., Geissler, M. & Mauzeroll, J. Oxygen plasma treatment of polystyrene and zeonor: substrates for adhesion of patterned cells. Langmuir 25, 7169–7176 (2009).
-
Peng, X. et al. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis. 5, e1367–e1367 (2014).
-
Zustiak, S., Nossal, R. & Sackett, D. L. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnol. Bioeng. 111, 396–403 (2014).
-
Ribeiro, A. J. S. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl. Acad. Sci. USA 112, 12705–12710 (2015).
-
Pasqualini, F. S. et al. Traction force microscopy of engineered cardiac tissues. PLOS ONE 13, e0194706 (2018).
-
Yoon, H. et al. Cold-water fish gelatin methacryloyl hydrogel for tissue engineering application. PLoS ONE 11, e0163902 (2016).
-
Chirianni, F., Vairo, G. & Marino, M. Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in-silico design tool. Meccanica 59, 1285–1299 (2024).
-
NIS-Element. NIS-Element software https://www.nikoninstruments.com/Products/Software.
-
Coll, B. & Morel, J.-M. Non-local means denoising. image processing on line 1, 1–5 (2011).
-
J. Darbon, A. Cunha, T. F. Chan, S. Osher, & G. J. Jensen. Fast nonlocal filtering applied to electron cryomicroscopy. in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1331–1334 (IEEE, 2008). https://doi.org/10.1109/ISBI.2008.4541250.
-
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
-
Leo Guignard. LineageTree. https://github.com/GuignardLab/LineageTree.
