Fabrication of cell culture hydrogels by robotic liquid handling automation for high-throughput drug testing

fabrication-of-cell-culture-hydrogels-by-robotic-liquid-handling-automation-for-high-throughput-drug-testing
Fabrication of cell culture hydrogels by robotic liquid handling automation for high-throughput drug testing

References

  1. Harrer, S., Shah, P., Antony, B. & Hu, J. Artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 40, 577–591 (2019).

    Google Scholar 

  2. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Google Scholar 

  3. Caudai, C. et al. AI applications in functional genomics. Comput Struct. Biotechnol. J. 19, 5762–5790 (2021).

    Google Scholar 

  4. Ringel, M. S., Scannell, J. W., Baedeker, M. & Schulze, U. Breaking Eroom’s law. Nat. Rev. Drug Discov. 19, 833–834 (2020).

    Google Scholar 

  5. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    Google Scholar 

  6. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Google Scholar 

  7. Kapałczyńska, M. et al. 2D and 3D cell cultures-a comparison of different types of cancer cell cultures. Arch. Med Sci. 14, 910–919 (2018).

    Google Scholar 

  8. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Google Scholar 

  9. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Google Scholar 

  10. Na, J. et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact. Mater. 35, 549–563 (2024).

    Google Scholar 

  11. Fang, Y. & Eglen, R. M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 22, 456–472 (2017).

    Google Scholar 

  12. Youhanna, S. onia et al. Organotypic and microphysiological human tissue models for drug discovery and development—current state-of-the-art and future perspectives. Pharm. Rev. 74, 141 (2022).

    Google Scholar 

  13. Decoene, I. et al. Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications. Stem Cells Translational Medicine szad091 (2024) https://doi.org/10.1093/stcltm/szad091.

  14. Lee, S.-Y., Hwang, H. J. & Lee, D. W. Optimization of 3D-aggregated spheroid model (3D-ASM) for selecting high efficacy drugs. Sci. Rep. 12, 18937 (2022).

    Google Scholar 

  15. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Google Scholar 

  16. Quintard, C. et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 15, 1452 (2024).

    Google Scholar 

  17. Rodoplu, D., Matahum, J. S. & Hsu, C.-H. A microfluidic hanging drop-based spheroid co-culture platform for probing tumor angiogenesis. Lab Chip 22, 1275–1285 (2022).

    Google Scholar 

  18. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Google Scholar 

  19. McConnell, E. R., McClain, M. A., Ross, J., LeFew, W. R. & Shafer, T. J. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. NeuroToxicology 33, 1048–1057 (2012).

    Google Scholar 

  20. Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human ipsc-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).

    Google Scholar 

  21. Kobel, S. & Lutolf, M. Fabrication of PEG hydrogel microwell arrays for high-throughput single stem cell culture and analysis. Methods Mol. Biol. 811, 101–112 (2012).

    Google Scholar 

  22. Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Google Scholar 

  23. Lin, S., Schorpp, K., Rothenaigner, I. & Hadian, K. Image-based high-content screening in drug discovery. Drug Discov. Today 25, 1348–1361 (2020).

    Google Scholar 

  24. Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1, 332–349 (2020).

    Google Scholar 

  25. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Google Scholar 

  26. Trask, O. J. Guidelines for microplate selection in high content imaging. Methods Mol. Biol. 1683, 75–88 (2018).

    Google Scholar 

  27. Nienhaus, F., Piotrowski, T., Nießing, B., König, N. & Schmitt, R. H. Adaptive phase contrast microscopy to compensate for the meniscus effect. Sci. Rep. 13, 5785 (2023).

    Google Scholar 

  28. Brooks, E. A., Jansen, L. E., Gencoglu, M. F., Yurkevicz, A. M. & Peyton, S. R. Complementary, semiautomated methods for creating multidimensional PEG-based biomaterials. ACS Biomater. Sci. Eng. 4, 707–718 (2018).

    Google Scholar 

  29. Skelton, M. L. et al. Modular multiwell viscoelastic hydrogel platform for two- and three-dimensional cell culture applications. ACS Biomater. Sci. Eng. 10, 3280–3292 (2024).

    Google Scholar 

  30. Machillot, P. et al. Automated buildup of biomimetic films in cell culture microplates for high-throughput screening of cellular behaviors. Adv. Mater. 30, 1801097 (2018).

    Google Scholar 

  31. Buxboim, A., Rajagopal, K., Brown, A. E. X. & Discher, D. E. How deeply cells feel: methods for thin gels. J. Phys.: Condens. Matter 22, 194116 (2010).

    Google Scholar 

  32. Zhang, N. et al. Soft hydrogels featuring in-depth surface density gradients for the simple establishment of 3D tissue models for screening applications. SLAS Discov. 22, 635–644 (2017).

    Google Scholar 

  33. Utama, R. H. et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience 23, 101621 (2020).

  34. Atma, Y. Synthesis and application of fish gelatin for hydrogels/composite hydrogels: a review. Biointerface Res. Appl. Chem. 12, 3966–3976 (2022).

    Google Scholar 

  35. Yang, G. et al. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4, e2497 (2016).

    Google Scholar 

  36. Singh, S. P., Schwartz, M. P., Lee, J. Y., Fairbanks, B. D. & Anseth, K. S. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2, 1024–1034 (2014).

    Google Scholar 

  37. Lu, P. et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct. Target. Ther. 9, 166 (2024).

    Google Scholar 

  38. McCain, M. L., Agarwal, A., Nesmith, H. W., Nesmith, A. P. & Parker, K. K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35, 5462–5471 (2014).

    Google Scholar 

  39. Jensen, J. H. et al. Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates. Sci. Rep. 10, 13305 (2020).

    Google Scholar 

  40. Haug, I. J., Draget, K. I. & Smidsrød, O. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll. 18, 203–213 (2004).

    Google Scholar 

  41. Kim, Y.-J. & Uyama, H. Biocompatible hydrogel formation of gelatin from cold water fish via enzymatic networking. Polym. J. 39, 1040–1046 (2007).

    Google Scholar 

  42. Viscous liquids need special pipetting techniques. https://handling-solutions.eppendorf.com/liquid-handling/pipetting-facts/pipetting-of-challenging-liquids/detailview/news/viscous-liquids-need-special-pipetting-techniques/.

  43. Lu, A., Zhu, J., Zhang, G. & Sun, G. Gelatin nanofibers fabricated by extruding immiscible polymer solution blend and their application in tissue engineering. J. Mater. Chem. 21, 18674–18680 (2011).

    Google Scholar 

  44. Sancakli, A., Basaran, B., Arican, F. & Polat, O. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Appl. Sci. 3, 8 (2021).

    Google Scholar 

  45. Song, K., Ren, B., Zhai, Y., Chai, W. & Huang, Y. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Biofabrication 14, 375 (2021).

  46. Bode, F., da Silva, M. A., Drake, A. F., Ross-Murphy, S. B. & Dreiss, C. A. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12, 3741–3752 (2011).

    Google Scholar 

  47. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Google Scholar 

  48. Schneider, I. C., Hays, C. K. & Waterman, C. M. Epidermal growth factor–induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de-adhesion. MBoC 20, 3155–3167 (2009).

    Google Scholar 

  49. Laly, A. C. et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci. Adv. 7, eabd6187 (2021).

  50. Sui, Y., Ding, H. & Spelt, P. D. M. Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97–119 (2014).

    Google Scholar 

  51. Tusan, C. G. et al. Collective cell behavior in mechanosensing of substrate thickness. Biophys. J. 114, 2743–2755 (2018).

    Google Scholar 

  52. Hernandez-Miranda, M. L. et al. Geometric constraint of mechanosensing by modification of hydrogel thickness prevents stiffness-induced differentiation in bone marrow stromal cells. J. R. Soc. Interface 21, 20240485 (2024).

    Google Scholar 

  53. M. Di Sante et al. CALIPERS: Cell cycle-aware live imaging for phenotyping experiments and regeneration studies. bioRxiv 2024.12.19.629259 (2024) https://doi.org/10.1101/2024.12.19.629259.

  54. Hokeness, K. et al. IFN-gamma enhances paclitaxel-induced apoptosis that is modulated by activation of caspases 8 and 3 with a concomitant down regulation of the AKT survival pathway in cultured human keratinocytes. Oncol. Rep. 13, 965–969 (2005).

    Google Scholar 

  55. Kim, H.-E., Cho, H., Ishihara, A., Kim, B. & Kim, O. Cell proliferation and migration mechanism of caffeoylserotonin and serotonin via serotonin 2B receptor in human keratinocyte HaCaT cells. BMB Rep. 51, 188–193 (2018).

    Google Scholar 

  56. Gustafsson, M. & Sebesta, M. Refractometry of microscopic objects with digital holography. Appl. Opt. 43, 4796–4801 (2004).

    Google Scholar 

  57. Hellesvik, M., Øye, H. & Aksnes, H. Exploiting the potential of commercial digital holographic microscopy by combining it with 3D matrix cell culture assays. Sci. Rep. 10, 14680 (2020).

    Google Scholar 

  58. Cooper G. M. The Eukaryotic Cell Cycle. in The Cell: A Molecular Approach (SSinauer Associates, 2000).

  59. Sharma, N., Kosan, Z., Stallworth, J., Berbari, N. & Yoder, B. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol. Biol. cell 22, 806–816 (2011).

    Google Scholar 

  60. Goler-Baron, V. & Assaraf, Y. G. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS ONE 6, e16007 (2011).

    Google Scholar 

  61. Elfarnawany, A. & Dehghani, F. Time- and concentration-dependent adverse effects of paclitaxel on non-neuronal cells in rat primary dorsal root ganglia. Toxics 11, 581 (2023).

  62. Janmey, P. A., Fletcher, D. A. & Reinhart-King, C. A. Stiffness sensing by cells. Physiol. Rev. 100, 695–724 (2020).

    Google Scholar 

  63. Seal, S. et al. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. Preprint at (2024).

  64. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  65. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection with Star-Convex Polygons. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265–273 (Springer, 2018).

  66. Mansoury, M., Hamed, M., Karmustaji, R., Al Hannan, F. & Safrany, S. T. The edge effect: a global problem. The trouble with culturing cells in 96-well plates. Biochem Biophys. Rep. 26, 100987 (2021).

    Google Scholar 

  67. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. (United States, 2019). https://doi.org/10.3791/60545.

  68. Feng, M., Wang, J., Liu, S., Wanatowski, D. & Ren, Y. Coupling effect of curing temperature and relative humidity on the unconfined compressive strength of xanthan gum-treated sand. Constr. Build. Mater. 448, 138224 (2024).

    Google Scholar 

  69. Phawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S. & Chung, D. Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocoll. 88, 119–126 (2019).

    Google Scholar 

  70. Gao, L. et al. A photopolymerizable biocompatible hyaluronic acid hydrogel promotes early articular cartilage repair in a minipig model in vivo. Adv. Healthc. Mater. 12, 2300931 (2023).

    Google Scholar 

  71. Agarwal, A. et al. Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv. Funct. Mater. 23, 3738–3746 (2013).

    Google Scholar 

  72. Beaulieu, I., Geissler, M. & Mauzeroll, J. Oxygen plasma treatment of polystyrene and zeonor: substrates for adhesion of patterned cells. Langmuir 25, 7169–7176 (2009).

    Google Scholar 

  73. Peng, X. et al. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis. 5, e1367–e1367 (2014).

    Google Scholar 

  74. Zustiak, S., Nossal, R. & Sackett, D. L. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnol. Bioeng. 111, 396–403 (2014).

    Google Scholar 

  75. Ribeiro, A. J. S. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl. Acad. Sci. USA 112, 12705–12710 (2015).

    Google Scholar 

  76. Pasqualini, F. S. et al. Traction force microscopy of engineered cardiac tissues. PLOS ONE 13, e0194706 (2018).

    Google Scholar 

  77. Yoon, H. et al. Cold-water fish gelatin methacryloyl hydrogel for tissue engineering application. PLoS ONE 11, e0163902 (2016).

    Google Scholar 

  78. Chirianni, F., Vairo, G. & Marino, M. Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in-silico design tool. Meccanica 59, 1285–1299 (2024).

    Google Scholar 

  79. NIS-Element. NIS-Element software https://www.nikoninstruments.com/Products/Software.

  80. Coll, B. & Morel, J.-M. Non-local means denoising. image processing on line 1, 1–5 (2011).

  81. J. Darbon, A. Cunha, T. F. Chan, S. Osher, & G. J. Jensen. Fast nonlocal filtering applied to electron cryomicroscopy. in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1331–1334 (IEEE, 2008). https://doi.org/10.1109/ISBI.2008.4541250.

  82. Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Google Scholar 

  83. Leo Guignard. LineageTree. https://github.com/GuignardLab/LineageTree.

Download references