Facile and efficient synthesis of silver nanoparticles using Stachys viscosa with phenolic profiling, antioxidant potential and cytotoxic activity

facile-and-efficient-synthesis-of-silver-nanoparticles-using-stachys-viscosa-with-phenolic-profiling,-antioxidant-potential-and-cytotoxic-activity
Facile and efficient synthesis of silver nanoparticles using Stachys viscosa with phenolic profiling, antioxidant potential and cytotoxic activity

References

  1. Ullah, R. et al. Synthesis of silver nanoparticles by Sedum adenotrichum extract and evaluating their antioxidant potential in albino mice. J. Drug Deliv Technol. 106, 106714. https://doi.org/10.1016/j.jddst.2025.106714 (2025).

    Google Scholar 

  2. El-Fitiany, R. A. et al. Secret elixirs of nature: extract type shapes the phytochemical-mediated synthesis and anticancer potential of ZnO and Fe2O3 nanoparticles from Salvadora persica. Sci. Rep. 15, 36716. https://doi.org/10.1038/s41598-025-20577-7 (2025).

    Google Scholar 

  3. Gecer, E. N. Green synthesis of silver nanoparticles from Salvia aethiopis L. and their antioxidant activity. J. Inorg. Organomet. Polym. Mater. 31, 4402–4409. https://doi.org/10.1007/s10904-021-02057-3 (2021).

    Google Scholar 

  4. Vikal, A., Maurya, R., Patel, P., Narang, R. & Kurmi, B. D. From resistance to response: metallic nanoparticles as game changers in triple negative breast cancer therapy. J. Drug Deliv Technol. 107322. https://doi.org/10.1016/j.jddst.2025.107322 (2025).

  5. Genc, N. et al. Biosynthesis, characterization and antioxidant activity of oleuropein-mediated silver nanoparticles. Inorg. Nano-Met Chem. 51, 411–419. https://doi.org/10.1080/24701556.2020.1792495 (2021).

    Google Scholar 

  6. DagB. Green synthesis, characterization, and antioxidant activity of silver nanoparticles using stachys Annua L. subsp. Annua var. Annua. Particul Sci. Technol. 40, 512–520. https://doi.org/10.1080/02726351.2021.1966689 (2022).

    Google Scholar 

  7. Sirvani, I., Sabouri, Z., Mostafapour, A. & Darroudi, M. Efficient synthesis of aqueous soluble Silymarin nanocrystals from Silybum Marianum and assessment of their antibacterial and cytotoxicity insights. Sci. Rep. 15, 35529. https://doi.org/10.1038/s41598-025-19501-w (2025).

    Google Scholar 

  8. Erenler, R. & Gecer, E. N. Synthesis of silver nanoparticles using Sideritis Montana L. Leaf extract: Characterization, catalytic degradation of methylene blue and antioxidant activity. J. Nano Res. 75, 17–28. https://doi.org/10.4028/p-333bjm (2022).

    Google Scholar 

  9. Gecer, E. N. & Erenler, R. Biosynthesis of silver nanoparticles using Dittrichia graveolens (Asteraceae) leaves extract: characterisation and assessment of their antioxidant activity. Turk. J. Biodiv. 5, 50–56. https://doi.org/10.38059/biodiversity.1090549 (2022).

    Google Scholar 

  10. Martínez-Becerril, E., González–Pedroza, M. G., Sandoval-Cabrera, A., Morales–Luckie, R. A. & Acuña-Ávila, P. E. Synthesis of silver nanoparticles from vicia Faba aqueous extract with cytotoxic activity against human acute T cell leukemia. Sci. Rep. 15, 33826. https://doi.org/10.1038/s41598-025-03679-0 (2025).

    Google Scholar 

  11. Kapche, D. et al. Aryl Benzofuran derivatives from the stem bark of calpocalyx dinklagei attenuate inflammation. Phytochemistry 141, 70–79. https://doi.org/10.1016/j.phytochem.2017.05.007 (2017).

    Google Scholar 

  12. Kada, S. et al. Protective activity of Hertia cheirifolia extracts against DNA damage, lipid peroxidation and protein oxidation. Pharm. Biol. 55, 330–337. https://doi.org/10.1080/13880209.2016.1261907 (2017).

    Google Scholar 

  13. Mejía-Méndez, J. L. et al. Kalanchoe tomentosa: Phytochemical Profiling, and Evaluation of Its Biological Activities In Vitro, In Vivo, and In Silico. Pharmaceuticals 17, 1051. (2024). https://doi.org/10.3390/ph17081051

  14. Oke-Altuntas, F. et al. Bioactivity evaluation of cudraxanthone I, Neocyclomorusin and (9 beta h)-3 beta-acetoxylanosta-7,24-diene isolated from milicia excelsa Welw. C. C. Berg (Moraceae). Med. Chem. Res. 25, 2250–2257. https://doi.org/10.1007/s00044-016-1670-3 (2016).

    Google Scholar 

  15. Meremeti, A., Karioti, A., Skaltsa, H., Heilmann, J. & Sticher, O. Secondary metabolites from Stachys Ionica. Biochem. Syst. Ecol. 32, 139–151. https://doi.org/10.1016/S0305-1978(03)00161-3 (2004).

    Google Scholar 

  16. Ebrahimabadi, A. H. et al. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys inflata Benth from Iran. Food Chem. 119, 452–458. https://doi.org/10.1016/j.foodchem.2009.06.037 (2010).

    Google Scholar 

  17. Laaraj, S. et al. Phytochemical characterization and biological activities of wild ceratonia siliqua L. leaves: antioxidant, antibacterial, and cytotoxic effects. Sci. Rep. 15, 36518. https://doi.org/10.1038/s41598-025-09062-3 (2025).

    Google Scholar 

  18. Nigam, M. et al. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells 14, 1207. (2025). https://doi.org/10.3390/cells14151207

  19. Nidhi, C. N. et al. Physicochemical and antioxidant properties of honey across bee species from North Eastern hill region of India. Sci. Rep. 15, 33759. https://doi.org/10.1038/s41598-025-98040-w (2025).

    Google Scholar 

  20. Duman, H. et al. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 14, 1527. https://doi.org/10.3390/nano14181527 (2024).

    Google Scholar 

  21. Erenler, R. et al. Chemical Constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) nutt. J. Food Biochem. 39, 622–630. https://doi.org/10.1111/jfbc.12168 (2015).

    Google Scholar 

  22. Merzouki, S. et al. Physico-chemical and biological investigations of Ocimum Basilicum L. Cultivated in Algeria. Curr. Chem. Biol. 18, 1–12. https://doi.org/10.2174/0122127968300108240527090556 (2024).

    Google Scholar 

  23. Bingol, M. N. & Bursal, E. LC-MS/MS analysis of phenolic compounds and in vitro antioxidant potential of stachys lavandulifolia vahl. var. brachydon boiss. Int. Lett. Nat. Sci. 72, 28–36. https://doi.org/10.18052/www.scipress.com/ILNS.72.28 (2018).

  24. Rahimi Khoigani, S., Rajaei, A. & Goli, S. A. H. Evaluation of antioxidant activity, total phenolics, total flavonoids and LC–MS/MS characterisation of phenolic constituents in Stachys Lavandulifolia. Nat. Prod. Res. 31, 355–358. https://doi.org/10.1080/14786419.2016.1233410 (2017).

    Google Scholar 

  25. Seçme, A., Bozer, B. M., Kocaman, A. Y., Erenler, R. & Calimli, M. H. Synthesis, characterization, and anticancer properties of ag nanoparticles derived from walnut leaves tested on cells of L929, MCF-7 and H1299. J. Drug Deliv Technol. 94, 105478. https://doi.org/10.1016/j.jddst.2024.105478 (2024).

    Google Scholar 

  26. Erenler, R., Geçer, E. N. & Moran Bozer, B. Cytotoxic, apoptotic, and necrotic effects of silver nanoparticles biosynthesized using Origanum Majorana extract. Int. J. Chem. Technol. 6, 142–146. https://doi.org/10.32571/ijct.1187754 (2022).

    Google Scholar 

  27. Erenler, R. et al. Facile, efficient synthesis of silver nanoparticles using Salvia absconditiflora: assessment of their antioxidant capacity and catalytic activity. Inorg. Chem. Commun. 158, 111623. https://doi.org/10.1016/j.inoche.2023.111623 (2023).

    Google Scholar 

  28. Karacalı Tunç, A., Sarıtaş, B. M. & Erenler, R. Antibacterial and Anti-Biofilm effect of silver nanoparticles synthesized from Origanum Majorana and Echinacea purpurea (L.) Moench plants via green synthesis. KOU Sag Bil Derg. 10, 48–52. https://doi.org/10.30934/kusbed.1389670 (2024).

    Google Scholar 

  29. Sahin Yaglioglu, A., Erenler, R., Gecer, E. N. & Genc, N. Biosynthesis of silver nanoparticles using Astragalus flavesces leaf: Identification, antioxidant Activity, and catalytic degradation of methylene blue. J. Inorg. Organomet. Polym. Mater. 32, 3700–3707. https://doi.org/10.1007/s10904-022-02362-5 (2022).

    Google Scholar 

  30. Erenler, R. et al. Phytochemistry of Lotus corniculatus flowers: a new and efficient method for determination of bioactive compounds by LC–ESI–MS/MS and a novel potentiometric PVC membrane sensor for the evaluation of antioxidant activity. Chem. Pap. 79, 2975–2982. https://doi.org/10.1007/s11696-025-03981-1 (2025).

    Google Scholar 

  31. Ökten, S., Çakmak, O., Erenler, R., Yüce, Ö. & Tekin, S. Simple and convenient Preparation of novel 6,8-disubstituted Quinoline derivatives and their promising anticancer activities. Turk. J. Chem. 37, 896–908. https://doi.org/10.3906/kim-1301-30 (2013).

    Google Scholar 

  32. Sahin Yaglioglu, A. et al. Antiproliferative activity of pentadeca-(8E, 13Z) dien-11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. Roots. Med. Chem. Res. 22, 2946–2953. https://doi.org/10.1007/s00044-012-0297-2 (2013).

    Google Scholar 

  33. Gecer, E. N. Synthesis and characterization of silver nanoparticles using Origanum onites leaves: Cytotoxic, apoptotic, and necrotic effects on Capan-1, L929, and Caco-2 cell lines. Green. Process. Synth. 12, 20228126. https://doi.org/10.1515/gps-2022-8126 (2023).

    Google Scholar 

  34. Koysu, P., Genc, N., Elmastas, M., Aksit, H. & Erenler, R. Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties. Nat. Prod. Res. 33, 3592–3595. https://doi.org/10.1080/14786419.2018.1488700 (2018).

    Google Scholar 

  35. Erenler, R. et al. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol. 55, 1646–1653. https://doi.org/10.1080/13880209.2017.1310906 (2017).

    Google Scholar 

  36. Yaman, C., Önlü, Ş., Ahmed, H. & Erenler, R. Comparison of phytochemicals and antioxidant capacity of Hypericum perforatum; wild plant parts and in vitro samples. J. Anim. Plant. Sci. 32, 596–603. https://doi.org/10.36899/JAPS.2022.2.0459 (2022).

    Google Scholar 

Download references