FcIgG-GE11-Melittin as a novel EGFR targeted peptibody with potent cytotoxic activity against cancer cells

fcigg-ge11-melittin-as-a-novel-egfr-targeted-peptibody-with-potent-cytotoxic-activity-against-cancer-cells
FcIgG-GE11-Melittin as a novel EGFR targeted peptibody with potent cytotoxic activity against cancer cells

References

  1. Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    Google Scholar 

  2. Wee, P. & Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9, (2017).

  3. Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20 (2018).

    Google Scholar 

  4. Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY™ technology. Curr. Opin. Biotechnol. 20, 692–699 (2009).

    Google Scholar 

  5. Rady, I., Siddiqui, I. A., Rady, M. & Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 402, 16–31 (2017).

    Google Scholar 

  6. Raghuraman, H. & Chattopadhyay, A. Melittin: a Membrane-active peptide with diverse functions. Biosci. Rep. 27, 189–223 (2007).

    Google Scholar 

  7. Guha, S. et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem. Pharmacol. 193, 114769 (2021).

    Google Scholar 

  8. Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev. 31, 173–194 (2012).

    Google Scholar 

  9. Wehbe, R. et al. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules 24, (2019).

  10. Pandey, P., Khan, F., Khan, M. A., Kumar, R. & Upadhyay, T. K. An Updated Review Summarizing the Anticancer Efficacy of Melittin from Bee Venom in Several Models of Human Cancers. Nutrients 15, (2023).

  11. Yin, H. et al. The hybrid oncolytic peptide NTP-385 potently inhibits adherent cancer cells by targeting the nucleus. Acta Pharmacol. Sin. 44, 201–210 (2023).

    Google Scholar 

  12. Yin, H. et al. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates. Bioorg. Chem. 138, 106674 (2023).

    Google Scholar 

  13. Qi, Y. K., Zheng, J. S. & Liu, L. Mirror-image protein and peptide drug discovery through mirror-image phage display. Chem 10, 2390–2407 (2024).

    Google Scholar 

  14. Fu, X. Y. et al. Three rounds of Stability-Guided optimization and systematical evaluation of oncolytic peptide LTX-315. J. Med. Chem. 67, 3885–3908 (2024).

    Google Scholar 

  15. Gajski, G., Garaj-Vrhovac, V. & Melittin A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36, 697–705 (2013).

    Google Scholar 

  16. Soman, N. R. et al. Molecularly targeted nanocarriers deliver the cytolytic peptide Melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest. 119, 2830–2842 (2009).

    Google Scholar 

  17. Li, Z. J. et al. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J. Control Release. 148, 292–302 (2010).

    Google Scholar 

  18. Hallaji, M. et al. Targeted cancer treatment using a novel EGFR-specific Fc-fusion peptide based on GE11 peptide. Sci. Rep. 15, 5107 (2025).

    Google Scholar 

  19. Araste, F. et al. Peptide-based targeted therapeutics: focus on cancer treatment. J. Control Release. 292, 141–162 (2018).

    Google Scholar 

  20. Rizkallah, J. et al. Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives. Pharmaceutics 17, (2025).

  21. Jadhav, V. et al. Bee venom loaded nanomaterials for cancer therapy: a novel approach. Discov Mater. 5, 92 (2025).

    Google Scholar 

  22. Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010).

    Google Scholar 

  23. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Google Scholar 

  24. Wessman, P., Strömstedt, A. A., Malmsten, M. & Edwards, K. Melittin-lipid bilayer interactions and the role of cholesterol. Biophys. J. 95, 4324–4336 (2008).

    Google Scholar 

  25. Sabapathy, T., Deplazes, E. & Mancera, R. L. Revisiting the interaction of Melittin with phospholipid bilayers: the effects of concentration and ionic strength. Int. J. Mol. Sci. 21, 746–766 (2020).

    Google Scholar 

  26. Park, M. H. et al. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate 71, 801–812 (2011).

    Google Scholar 

  27. Lim, H. N., Baek, S. B. & Jung, H. J. Bee venom and its peptide component Melittin suppress growth and migration of melanoma cells via Inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules 24, 929–942 (2019).

    Google Scholar 

  28. Li, X. et al. Melittin induces ferroptosis and ER stress-CHOP-mediated apoptosis in A549 cells. Free Radic Res. 56, 398–410 (2022).

    Google Scholar 

  29. Nikodijević, D. et al. Impact of bee venom and Melittin on apoptosis and biotransformation in colorectal carcinoma cell lines. Toxin Rev. 40, 1–8 (2019).

    Google Scholar 

  30. Askari, P., Namaei, M. H., Ghazvini, K. & Hosseini, M. In vitro and in vivo toxicity and antibacterial efficacy of Melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol. Toxicol. 22, 42 (2021).

    Google Scholar 

  31. Cheng, B. & Xu, P. Redox-Sensitive nanocomplex for targeted delivery of Melittin. Toxins 12, 582–595 (2020).

    Google Scholar 

  32. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer. 7, 654–658 (2007).

    Google Scholar 

  33. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, 134–139 (2003).

    Google Scholar 

  34. Harding, F. A., Stickler, M. M., Razo, J. & DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).

    Google Scholar 

  35. Hallaji, M., Parhamfar, M., Raoufi, E. & Abtahi, H. Cloning and High-Level expression of the enzymatic region of phytase in E. coli. Int. J. Pept. Res. Ther. 25, 1431–1439 (2019).

    Google Scholar 

Download references