First comparison of commercial systems to prepare nanofat: technical performances and biological quality differ among obtained products

first-comparison-of-commercial-systems-to-prepare-nanofat:-technical-performances-and-biological-quality-differ-among-obtained-products
First comparison of commercial systems to prepare nanofat: technical performances and biological quality differ among obtained products

Data availability

All data generated during this study are included in this published article. The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

Abbreviations

AEVs:

Adipocyte-derived extracellular vesicles

ASC:

Adipose-derived stem/stromal cells

ASC-EVs:

Adipose stromal/stem cell-derived extracellular vesicles

AT:

Adipose tissue

ATMP:

Advanced therapy medicinal product

CFU-F:

Colony forming units-fibroblasts

CM:

Conditioned media

DAPI:

4′,6-Diamidino-2-phenylindole (utilisé pour marquage nucléaire)

EBM:

Endothelial basal medium

ECM:

Extracellular matrix

EEVs:

Endothelial-derived extracellular vesicles

ErEVs:

Erythrocyte-derived extracellular vesicles

EVs:

Extracellular vesicles

FBS:

Fetal bovine serum

FMO:

Fluorescence minus one

HSA:

Human serum albumin

IFATS:

International federation for adipose therapeutics and science

IGF:

Insulin-like growth factor

IQR:

Interquartile range

ISCT:

International society for cellular therapy

LEVs:

Leukocyte-derived extracellular vesicles

MSC-EVs:

Mesenchymal stromal/stem cell-derived EVs

ORO:

Oil Red O

PBS:

Phosphate-buffered saline

PDGF:

Platelet-derived growth factor

PEVs:

Platelet-derived extracellular vesicles

PFA:

Paraformaldehyde

SVF:

Stromal vascular fraction

VEGF:

Vascular endothelial growth factor

VNC:

Viable nucleated cells

References

  1. Coleman, S. R. Structural fat grafting: More than a permanent filler. Plast. Reconstr. Surg. 118(Suppl), 108S-120S (2006).

    Google Scholar 

  2. Meruane, M. A., Rojas, M. & Marcelain, K. The use of adipose tissue-derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast. Reconstr. Surg. 130(1), 53–63 (2012).

    Google Scholar 

  3. Zuk, P. A. et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7(2), 211–228 (2001).

    Google Scholar 

  4. Nguyen, P. S. A., Desouches, C., Gay, A. M., Hautier, A. & Magalon, G. Development of micro-injection as an innovative autologous fat graft technique: The use of adipose tissue as dermal filler. J. Plast. Reconstr. Aesthetic. Surg. JPRAS. 65(12), 1692–1699 (2012).

    Google Scholar 

  5. Ding, P. et al. Research progress on preparation, mechanism, and clinical application of nanofat. J. Burn Care Res. Off Publ. Am. Burn. Assoc. 43(5), 1140–1144 (2022).

    Google Scholar 

  6. La Padula, S. et al. Nanofat in plastic reconstructive, regenerative, and aesthetic surgery: A review of advancements in face-focused applications. J. Clin. Med. 12(13), 4351 (2023).

    Google Scholar 

  7. Tonnard, P. et al. Nanofat grafting: Basic research and clinical applications. Plast. Reconstr. Surg. 132(4), 1017–1026 (2013).

    Google Scholar 

  8. Quintero Sierra, L. A. et al. Highly pluripotent adipose-derived stem cell-enriched nanofat: A novel translational system in stem cell therapy. Cell Transplant. 32, 9636897231175968 (2023).

    Google Scholar 

  9. Grünherz, L., Sanchez-Macedo, N., Frueh, F. S., McLuckie, M. & Lindenblatt, N. Nanofat applications: From clinical esthetics to regenerative research. Curr. Opin. Biomed. Eng. 10, 174–180 (2019).

    Google Scholar 

  10. Lo Furno, D. et al. Nanofat 2.0: Experimental evidence for a fat grafting rich in mesenchymal stem cells. Physiol. Res. 66(4), 663–671 (2017).

    Google Scholar 

  11. Cohen, S. R. et al. Cellular optimization of nanofat: Comparison of two nanofat processing devices in terms of cell count and viability. Aesth. Surg. J. Open Forum. 1(4), 28 (2019).

    Google Scholar 

  12. Wei, H. et al. Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation. Oncotarget 8(40), 68542–68556 (2017).

    Google Scholar 

  13. Colazzo, F. et al. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors 32(5), 139–149 (2014).

    Google Scholar 

  14. Banyard, D. A. et al. Phenotypic analysis of stromal vascular fraction after mechanical shear reveals stress-induced progenitor populations. Plast. Reconstr. Surg. 138(2), 237e-e247 (2016).

    Google Scholar 

  15. Sultan, S. M. et al. Human fat grafting alleviates radiation skin damage in a murine model. Plast. Reconstr. Surg. 128(2), 363–72 (2011).

    Google Scholar 

  16. Klinger, M., Caviggioli, F., Vinci, V., Salval, A. & Villani, F. Treatment of chronic posttraumatic ulcers using autologous fat graft. Plast. Reconstr. Surg. 126(3), 154e-e155 (2010).

    Google Scholar 

  17. Rageh, M. A., El-Khalawany, M. & Ibrahim, S. M. A. Autologous nanofat injection in treatment of scars: A clinico-histopathological study. J. Cosmet. Dermatol. 20(10), 3198–3204 (2021).

    Google Scholar 

  18. Arcani, R. et al. Nanofat use in regenerative medicine: A systematic literature review and consensus recommendations from expert opinions. Facial Plast. Surg. Aesth. Med. 1, 1 (2025).

    Google Scholar 

  19. Lombardo, J. A., Banyard, D. A., Widgerow, A. D. & Haun, J. B. Fluidic device system for mechanical processing and filtering of human lipoaspirate enhances recovery of mesenchymal stem cells. Plast. Reconstr. Surg. 151(1), 72e–84e (2023).

    Google Scholar 

  20. Girard, P. et al. Modified nanofat grafting: Stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications. Front. Bioeng. Biotechnol. 10, 895735 (2022).

    Google Scholar 

  21. Chen, X. et al. Mechanical emulsification of lipoaspirate by different Luer-Lok connector changes the viability of adipose derived stem cells in Nanofat. J. Plast. Surg. Hand Surg. 54(6), 344–351 (2020).

    Google Scholar 

  22. Bourin, P. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6), 641–648 (2013).

    Google Scholar 

  23. Bonifay, A. et al. A new strategy to count and sort neutrophil-derived extracellular vesicles: Validation in infectious disorders. J. Extracell. Vesicles 11(4), 1. https://doi.org/10.1002/jev2.12204 (2022).

    Google Scholar 

  24. Qiu, H., Jiang, Y., Chen, C., Wu, K. & Wang, H. The effect of different diameters of fat converters on adipose tissue and its cellular components: selection for preparation of nanofat. Aesth. Surg. J. 41(11), 1734–1744 (2021).

    Google Scholar 

  25. Grünherz, L., Kollarik, S., Sanchez-Macedo, N., McLuckie, M. & Lindenblatt, N. Lipidomic analysis of microfat and nanofat reveals different lipid mediator compositions. Plast. Reconstr. Surg. 154(5), 895e–905e (2024).

    Google Scholar 

  26. Sanchez-Macedo, N., McLuckie, M., Grünherz, L. & Lindenblatt, N. Protein profiling of mechanically processed lipoaspirates: Discovering wound healing and antifibrotic biomarkers in nanofat. Plast. Reconstr. Surg. 150(2), 341e-e354 (2022).

    Google Scholar 

  27. Chen, A. et al. Small extracellular vesicles from human adipose-derived mesenchymal stromal cells: A potential promoter of fat graft survival. Stem Cell Res. Ther. 12(1), 263 (2021).

    Google Scholar 

  28. Wang, Y., Li, Q., Zhou, S., & Tan, P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front. Endocrinol. 15, 1374715 (2024).

  29. François, P. et al. Inter-center comparison of good manufacturing practices-compliant stromal vascular fraction and proposal for release acceptance criteria: a review of 364 productions. Stem Cell Res Ther. 12(1), 373 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors declare that they have not used AI-generated work in this manuscript

Funding

This study was funded by the Société Nationale Française de Médecine Interne (SNFMI) and the Association des Hospitalo-Universitaires de Marseille (ASHUM).

Author information

Author notes

  1. These authors contributed equally: Mélanie Velier and Jérémy Magalon.

Authors and Affiliations

  1. Internal Medicine and Therapeutics Department, CHU La Timone, AP-HM, Marseille, France

    Robin Arcani & Aurélie Daumas

  2. Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France

    Robin Arcani, Maxime Abellan, Stéphanie Simoncini, Stéphane Robert, Anouck Zavarro, Romaric Lacroix, Françoise Dignat George, Florence Sabatier, Aurélie Daumas, Mélanie Velier & Jérémy Magalon

  3. Plastic Surgery Department, CHU Conception, AP-HM, Marseille, France

    Maxime Abellan

  4. ExAdEx-Innov, 28 Avenue de Valombrose, Nice, France

    Vincent Dani

  5. Laboratoire de Culture et Thérapie Cellulaire, Cell Therapy Department, CHU de La Conception, INSERM CIC BT 1409, 147 Boulevard Baille, AP-HM, 13005, Marseille, France

    Cécilia Bec, Florence Sabatier, Mélanie Velier & Jérémy Magalon

  6. Clinical Pharmacology and Drug Surveillance, Marseille University Hospital, Marseille, France

    Elisabeth Jouve

  7. Department of Hematology, Biogenopole, CHU La Timone, APHM, Marseille, France

    Laurent Arnaud, Romaric Lacroix & Françoise Dignat George

  8. Centre for Aesthetic & Regenerative Medicine, Clinique Genolier, Genolier, Switzerland

    Sophie Menkes

  9. Remedex, Regenerative Medicine Department of Excellence, Marseille, France

    Guy Magalon

Authors

  1. Robin Arcani
  2. Maxime Abellan
  3. Stéphanie Simoncini
  4. Vincent Dani
  5. Stéphane Robert
  6. Anouck Zavarro
  7. Cécilia Bec
  8. Elisabeth Jouve
  9. Laurent Arnaud
  10. Sophie Menkes
  11. Guy Magalon
  12. Romaric Lacroix
  13. Françoise Dignat George
  14. Florence Sabatier
  15. Aurélie Daumas
  16. Mélanie Velier
  17. Jérémy Magalon

Contributions

RA, MA, SS, VD, SR, AZ, LA, CB, SM and MV performed experiments and collected data. RA, SS, VD, SR, EJ, LA, RL, MV and JM analysed and interpreted the results. GM, AD, MV, and JM conceived the study, supervised the project, and contributed to data interpretation. GM, RL, FDG, FS, and AD provided critical input on study design, data interpretation, and manuscript revision. RA, MA, SS, SR, LA, VD, MV and JM drafted the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jérémy Magalon.

Ethics declarations

Competing interests

GM, FS and JM are cofounders of the Remedex Network. JM received honoraria for educational support from Fidia Pharmaceuticals, Horiba, Arthrex, Horus Pharma and Macopharma. These manufacturers had no role in the development of this study or its decision for publication. The authors declare that they have no competing interests.

Ethics approval and consent to participate

All donors who participated in the study received an information and nonopposition notice and did not express any objection to the use of their adipose tissue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcani, R., Abellan, M., Simoncini, S. et al. First comparison of commercial systems to prepare nanofat: technical performances and biological quality differ among obtained products. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-40847-2

Keywords